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Incorporating nonoverlap indices with visual

analysis for quantifying intervention effectiveness

in single-case experimental designs

Daniel F. Brossart, Kimberly J. Vannest, John L. Davis, and
Marc A. Patience

Texas A&M University, College Station, TX, USA

(Received June 2013; accepted November 2013)

The field of neuropsychological rehabilitation frequently employs single case
experimental designs (SCED) in research, but few if any, of the published
studies use the effect sizes recommended by the American Psychological
Association. Among the available methods for analysing single case designs,
this paper focuses on nonoverlap methods. This paper provides examples and
suggestions for integrating visual and statistical analysis, pointing out where
contradictions may occur and how to be a critical consumer.

Keywords: Nonoverlap; Visual analysis; Effect size; Single-case; Tau-U.

INTRODUCTION

The advantages and disadvantages of single case experimental designs
(SCEDs) have been noted in numerous books, chapters, and articles across
multiple disciplines. This discussion is often framed in such a way that
SCEDs are compared to randomised clinical trials (RCTs). This effort, one
may presume, is to show that SCEDs have important strengths that RCTs
do not. Suffice it to say that single-case designs can be among “the most
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effective and powerful” (Shadish, Cook, & Campbell, 2002, p. 171) nonran-
domised experimental designs (Shadish, Rindskopf, & Hedges, 2008).

SCEDS, CLINICAL PRACTICE, AND CONCEPTUAL
FOUNDATIONS

Arguably, SCEDs can be integrated into many clinical practices where one is
concerned about a patient’s response to treatment (Barnett et al., 2012).
Instead of using RCTs to search for effective treatments, some have cham-
pioned the benefits of beginning with research that identifies effective prac-
tice in the community – studying those interventions used by experienced
clinicians (Blais & Hilsenroth, 2007). SCEDs could play an important role
in such an endeavour. Relatedly, some contend that clinicians should be a
major force in developing evidence for practice (Grimmer, Bialocerkowski,
Kumar, & Milanese, 2004). This would help ensure that research is meaning-
ful for the clinician, eventually developing into partnerships with investi-
gators and resulting in clinically meaningful research that would improve
the treatments delivered by clinicians.

The need for evidence-based practice has been articulated for numerous
disciplines in statements produced by organisations such as the Cochrane Col-
laboration, What Works Clearinghouse, Campbell Collaboration, Coalition
for Evidence-Based Policy, and the American Speech-Language-Hearing
Association’s National Center for Evidence-Based Practice in Communi-
cation Disorders. In addition, many organisations are involved in producing
guidelines for practice that are designed to assist the clinician or practitioner
in making treatment decisions. Evidence-based practice places the focus on
the individual patient. Yet for research findings to be adopted and to
impact practice, such findings must have clinical relevance. Clinicians are
usually concerned about the treatment of their patient, whereas many research
endeavours provide information on how a treatment impacts a sample. In
many cases, there is no clear linkage between the treatment of their particular
patient and how a sample responded to a treatment.

Part of the problem in linking scientific findings to the treatment of a par-
ticular patient may be due to the overuse of one kind of research paradigm.
Some have framed the issue as one of needing to adopt a more idiographic
approach in lieu of the nomothetic approach (e.g., Lamiell, 1981). Yet the
issue is more complicated than what on the surface seems to be simply study-
ing individuals rather than groups. Idiographic knowledge is concerned with
describing and explaining particular phenomena, while nomothetic knowl-
edge is concerned with “finding generalities that are common to a class of par-
ticulars and deriving theories or laws to account for these generalities”
(Robinson, 2011, p. 32). Historically it has been argued that these are
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complementary sides of all science rather than opposing perspectives. Yet as
noted by Robinson (2011) there are two forms of the nomothetic approach.
One seeks to determine what is common to all individuals in a sample or cat-
egory (the Wundtian model) and the other seeks to determine what is common
to a sample or group of persons as an aggregated whole (the Galtonian
model). The Wundtian approach would use individual cases to develop and
test theory (often case-by-case). The goal would be to determine what is
“common to all”, where any case not conforming would be a challenge to
the theory. Such a process is markedly different than making statements
about what is true for an aggregated whole.

The term idiographic has been used recently to refer to a variety of things
beyond its original definition. For example, Barlow and Nock (2009) seem to
associate equivalence with SCEDs and idiographic research. Others, such as
Molenaar (2004) and Nesselroade (1991) focus on issues of variability (intra-
individual and interindividual variability), while Cattell (1988) used a Data
Box or Basic Data Relations Matrix to illustrate how differing mixtures of
variables, persons, and occasions provide different ways to address various
research questions ranging from those complementary to the Galtonian
model (such as R technique, which consists of many variables in columns,
many people in rows, one occasion) to those more in line with a Wundtian
model (e.g., P technique, which consists of many variables, many occasions,
one person). As noted by Robinson (2011), idiographic research is not tied to
a specific method, it is an objective – the objective to describe or explain a
single phenomenon.

While some would see adopting a Wundtian approach or using SCEDs as a
step in the right direction in terms of balancing the overuse of the Galtonian
approach, it does not automatically solve many issues facing the researcher
seeking to produce clinically relevant results. For instance, the proper way
to analyse data from SCEDs remains a topic under investigation, with no
single approach proving to be superior in every instance. Historically,
visual analysis was viewed as the proper way to analyse such data. Multiple
studies have examined the reliability of human judges analysing single-case
data and have generally found that human judges are mediocre at best even
when given contextual data in which to interpret the graphs (e.g., Brossart,
Parker, Olson, & Mahadevan, 2006). It appears that the one thing that
human judges are reasonably good at is detecting graphs that show no treat-
ment effect (Ximenes, Manolov, Solanas, & Quera, 2009). A few studies have
reported high inter-rater agreement, but these studies have important interpre-
tive aids. For instance, one study involved multiple phases (ABAB), and
raters were asked to make a determination if the graph demonstrated exper-
imental control on a scale of 0 to 100 (Kahng et al., 2010). Another study
(Hagopian, Fisher, Thompson, & Owen-DeSchryver, 1997) had the partici-
pants draw upper and lower criterion lines (approximately 1 SD from the
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mean of the control condition). Rules were then given on how to interpret the
graphs based on these lines. A high level of agreement was achieved after the
participants underwent training on using the rules for the interpretation of
multi-element functional analysis data. Research is ongoing in regards to
the effects various graphing characteristics have on visual judgement. In
some instances, the results suggest that some graphing conventions may
have an impact on the Type I and Type II error rates, but more research is
needed (Carter, 2009).

STATISTICAL ANALYSIS, EFFECT SIZES, AND VISUAL
ANALYSIS

Most researchers investigating statistical methods to analyse single-case data
advocate the use of both visual and statistical analysis such that both inform
the other (Brossart et al., 2006; Franklin, Allison, & Gorman, 1996). One dif-
ficulty the investigator faces is choosing from the bewildering number of stat-
istical methods available (Parker & Brossart, 2003). There are a number of
non-parametric effect sizes that produce an effect size ranging from 0 to 1
that provide an estimate of the size of change in response to a treatment or
intervention.

Use of non-parametric analysis is important because single case studies
typically have short data sets or few data points, non-normal or unknown dis-
tributions, and unknown parameters. When a confidence interval and p value
are provided with an effect size, the results give us an estimate of the prob-
ability of chance occurrence of the effect size and an explicit estimate of
the error based on a confidence level we find desirable. There are many
non-parametric effect sizes in the published literature, each with their relative
strengths and weaknesses.

An early effect size was the extended celeration line (ECL; White &
Haring, 1980) followed by percentage of non-overlapping data (PND;
Scruggs, Mastropieri, & Casto, 1987), percent of data exceeding the
median (PEM; Ma, 2006), percentage of all non-overlapping pairs (PAND;
Parker, Hagan-Burke, & Vannest, 2007), non-overlap of all pairs (NAP;
Parker & Vannest, 2009), the improvement rate difference (IRD; Parker,
Vannest, & Brown, 2009), the percent of data exceeding the phase A
median trend (PEM-T; Wolery, Busick, Reichow, & Barton, 2010), and,
finally, Tau-U (Parker, Vannest, Davis, & Sauber, 2011b).

Existing papers present the techniques and one paper reviews them in more
depth (Parker, Vannest, & Davis, 2011a) so we will not attempt to do that
here, but rather to demonstrate how each performs by first providing a brief
review of each technique using an artificial data set to demonstrate differences
in procedures, results, strengths and weaknesses. Then we use existing data to
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evaluate how the superior indices perform with typical neuropsychological
data. We conclude with some examples of when contradictions may occur
so that the reader may make informed choices and thoughtful interpretations.

Effect size indices should ideally be used in conjunction with parts of a
visual analysis, perhaps better termed “design analysis”. A design analysis
is the notion of assessing the SCED for threats to internal or conclusion val-
idity and we introduce the term here to distinguish a design analysis from a
visual analysis. A design analysis examines the structure of the experiment
to see if it is valid for asserting a functional relationship, whereas a visual
analysis looks at means, trends, immediacy and consistency of change in
assessing type and amount of behaviour change. This visual analysis may
inform a determination about a functional relationship, but not in isolation
from evaluation of the design. For example, an AB design alone can never
be used to determine causation.

A visual analysis looks for effects of treatment by examining relative size
of change, onset of change, trend or stability of measurement, replication
demonstrations and consistency. A design analysis looks only at the adequacy
of a design for conclusion validity. It is the design of the study that controls
for threats to validity (Kazdin, 2011; Kennedy, 2005). A study with poor
internal validity or poor conclusion validity will not allow one to make
strong inferences about its findings. Therefore a design analysis occurs
before effect size calculation by determining if a functional relationship
was established. The criterion for a functional relationship includes three or
more demonstrations of experimental control or phase changes (Kratochwill
et al., 2010). For example an ABAB design would show behaviour change
between A1B1, B1A2, and A2B2. Another example would be a multiple
baseline design with behaviour change across three or more participants or
settings. A design analysis can be applied a priori to a study or post-hoc in
the case of a meta-analysis.

When calculating effect sizes for a meta-analysis or to determine evidence-
based practices, another concept is required and that is to examine the quality
of the studies included (Horner et al., 2005; Kratochwill et al., 2010). Things
like careful consideration of participant description and sufficient procedural
detail for replication improves the external validity of the study. Quantifi-
cation of SCED should only occur when prior conditions for quality are
met (Horner et al., 2005; Kratochwill et al., 2010).

REVIEW OF EFFECT SIZE INDICES

We are frequently asked, “Which effect size should we use?” Although some
may assume it is just a matter of selecting the largest one, prior research
suggests the matter is more complicated than basing one’s decision on the
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size of the effect. So how does one determine which effect size is a best per-
former? Several methods have been documented to have important character-
istics that should be considered before their use. PND has well-documented
limitations and several researchers recommend it not be used (Kratochwill
et al., 2010; Parker & Vannest, 2009). PEM has performed poorly when com-
pared to other methods; it was unable to discriminate among data sets that
posed no problem for other methods (Parker, Vannest, & Davis, 2011a; see
also Wolery et al., 2010). Other studies have found PAND to be problematic
in that it yielded similar results for data sets with and without treatment
effects (Manolov, Solanas, & Leiva, 2010). In terms of relative power,
ECL and PEM appear to have the lowest power among non-overlap
methods. IRD has moderate power, but variability causes a problem in sensi-
tivity (Manolov, Solanas, Sierra, & Evans, 2011). IRD and PNCD (a newer
and less studied variation of PND, Manolov & Solanas, 2009) appear to be
somewhat dependent on the length of the series analysed (Manolov &
Solanas, 2009; Manolov et al., 2011). Those with the most power are NAP,
and Tau-U (Parker, Vannest, & Davis, 2011a). NAP appears to perform ade-
quately under higher levels of autocorrelation and is unaffected by distortions
due to heteroscedasticity except when there was an exponential uniform
random variable term in the generated data in a simulation study (Manolov
et al., 2011). Yet the same group of investigators found that linear trend
inflated NAP and to a greater extent IRD. Even so, it appears that NAP is
one of the better performing indices. Tau-U is an extension of NAP with
the ability to correct for trend (PNCD also controls for baseline trend,
Manolov et al., 2011). Tau-U addresses change in trend and level, it is distri-
bution free, is only somewhat influenced by autocorrelation, and when con-
trolling for trend, does so in a more conceptually defensible manner than
the regression method advocated by Allison and colleagues (Parker,
Vannest, Davis, & Sauber, 2011b).

In addition to general strengths and limitations of each statistical method,
the single-case investigator will often be faced with data possessing certain
characteristics that make analysis more difficult. Small data sets, variability,
inconsistent effects, and small or gradual behaviour change are just some of
the problems encountered in SCEDs. Another is the presence of baseline
trend. Correcting for baseline trend is a practice that continues to be
debated. If trend is present and arguably needs to be controlled, then only
three non-overlap methods are currently able to do so. PNCD controls for
baseline trend by a differencing procedure before the intervention effect is
calculated (Manolov & Solanas, 2009), but if no trend is present in the base-
line phase then other methods may be preferred. ECL controls for trend that is
assumed to be linear and to continue into the treatment phase. Tau-U controls
for monotonic trend. Thus, for many situations it appears that Tau-U is the
better performing non-parametric method for analysing single-case data
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currently available. A summary of six non-overlap methods is presented in
Table 1, which contains a brief overview of how the statistic is calculated,
and strengths and weaknesses of each method are included.

Nevertheless, the best approach may be to report multiple effect sizes
similar to the practice of reporting multiple fit indices in structural equation
modelling (SEM). In SEM, multiple fit indices are typically reported
because each fit index conveys something different than the other fit
indices. Some fit indices are absolute measures of fit whereas others are incre-
mental or comparative fit indices. Some contain a penalty based on the
number of parameters estimated, while others do not. In similar fashion, for
reporting single-case effect sizes, the best approach may be to report
several effect sizes since each method appears to have strengths and
weaknesses.

In the remainder of the paper we report both IRD and Tau-U. We felt it
important for two methods to be used in our examples to provide some
means of comparison. IRD, though limited in some aspects, is easy to
compute and seemed a reasonable method to compare with Tau-U. IRD is
from the risk ratio family of effect sizes and is theoretically different (a pro-
portion) than Tau-U which is a dominance statistic.

HAND CALCULATION OF TAU

Here we present an artificial data set to compare results and review strengths
and limitations of each technique. Given a sample data set for an ABAB
reversal design where phase A is baseline and phase B is treatment
(Figure 1). Consider the following data for “Jack” A1 – 3, 2.5, 3.5, 7, 3, 3;
B1 – 8, 7, 6.5, 8, 8, 6, 5, 9, 10; A2 – 7, 6, 5, 3, 3, 5, 2, 3, 4, 2; B2 – 8, 9,
8, 10, 10, 9, 10, 8, 10, 9.5, 9, 8, 8, 8.4, 7.8. The example data analysis will
be for the first AB phase contrast only.

Although complete steps are available in prior publications (e.g., Parker
et al., 2011b), the heuristic below demonstrates the hand procedure in
greater depth than that provided in Table 1 for calculating Tau-U

Figure 1. Graph of data set for Jack.
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TABLE 1

Comparison of effect size calculation steps for methods by hand using same data set

PND ECL PEM IRD NAP TauU/Tau

Step

1

Identify the number of data

points in intervention

exceeding the highest

point in baseline (5)

Calculate the median

trend line of phase A

and extend through

phase B

Find the median of phase

A and extend the line

through phase B

Identify and remove

the fewest number

of data points to

eliminate the

overlap (1)

Compare each pairwise

comparison and assign

value of 1 for

improvement, 0.5 for tie or

0 for no improvement

Compare each data point

in forward manner

using a matrix, score

+, t, –

Step

2

Divide the higher number

by the total number of

data points in phase B 5/

9 ¼ .55

Divide the number of

data points

exceeding the line

by the total number

of data points 10/10

¼ 1

Divide the number of data

points in B exceeding

the line by the total

number of data points

8/10 ¼ .80

Data improved in

phase B (9/9 ¼ 1).

Data improved in

phase A (1/6 ¼

.17).

Subtract

1–.17 ¼ .83

Number of all possible pairs

in phase A data points x

phase B data points (6×9

¼ 54). Number of

improvement divided by

total is 50.5/54 ¼ .93

Calculate S/# pairs where

S ¼ pos-neg and #

pairs is number of

pair-wise

comparisons

47/54 ¼ .87

Step

3

Result is .55 or 55% Recalibrate score

(1×2) – 1 ¼ 1 or

100%

Recalibrate score

(.80 x 2) – 1 ¼ .60 or

60%

Result is .83 or 83% Recalibrate

(.93 x 2) – 1 ¼ .86 or 86%

.87%

Strengths

-Field tested in dozens

of studies for more than

a decade.

-Easy hand calculation

-Long history.

-Adjusted for trend.

-Easy hand

calculation.

-More representative

than PND by using

Mean

-Well used in

medical literature.

-Superior precision and

power.

-Direct calculation and

interpretation

-Ability to control

trend.

-All data involved.

-Conservative but not

overly so.

Limitations

-Floor and ceiling

effects.

-Lacks sampling

distribution.

-Will not work for a

meta-analysis.

-Lack of precision

and power.

-Assumes linearity.

-Unreliable phase a

trend.

-Low power.

-Lack of sensitivity.

-Severe ceiling effects.

-Insensitive to

trend.

-Insensitive to trend.

-Not as easy to calculate

by hand.

-May not show

sensitivity to all data

patterns.

-Not easy by hand on

long data sets.
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(Figure 2). The steps for calculating Tau-U are as follows: each data point
compared to all data points ahead of it in time in a “forward” direction. For
each pairwise comparison determine if the earlier data point is larger
(assign a +) smaller, (assign a –), or equal (assign a t for tie). To determine
the number of possible comparisons multiply the number of data points in
phase A with the number in phase B (N∗ (N–1))/2. To calculate this by
hand and summarise these data visually, create a half-matrix where phase
A and phase B data are enumerated on the X and Y axis and the “+”, “–”,
or “t” is assigned to each cell.

The data in this matrix should form a triangle with the data forming three
regions. The triangles represent the trend within the A or B phase and the rec-
tangle is the A vs. B nonoverlap. To determine the Tau in phase A add the
values in that triangle and divide by the comparisons in that part of the
matrix. The process is the same to determine the Tau in phase B. Tau-U
can be applied as the primary analysis of the AB comparison of nonoverlap,
but also within phases to determine trend when combined trend can be con-
servatively removed from either side A or B or both. More detail on control-
ling for baseline trend and accounting for phase B trend is reported in Parker

Figure 2. Example matrix for calculating Tau by hand.

472 BROSSART, VANNEST, DAVIS, AND PATIENCE

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
2:

45
 1

0 
Ja

nu
ar

y 
20

15
 



et al. (2011b). These variations of Tau-U include: (a) AB phase comparison,
(b) AB comparison controlling for phase A trend, (c) AB comparison plus
phase B trend, (d) AB comparison controlling for phase A trend plus phase
B trend. These variations make Tau-U very versatile, but also require concep-
tual clarity on the user’s part to report the output that makes the most sense
given their particular application and data characteristics.

To calculate Tau-U one may prefer to use R syntax developed to calculate
Tau-U (https://dl.dropboxusercontent.com/u/2842869/Tau_U.R). To use
one’s own data, create a comma delimited file with time in the first
column, one’s data in the second column, and phase in the third column
using 0 or 1. The first row should contain the variable name for each
column. The R syntax requires that the Kendall package be loaded in
R. This syntax will produce output for each variation of Tau-U described
in Parker et al. (2011b).

ILLUSTRATIVE ARTICLES

In order to obtain single-case graphs for the purpose of evaluating effect size
calculation methods, a review of articles from the journal Neuropsychological
Rehabilitation published between 1987 and 2013 was performed. A total of
123 single case graphs were pulled from 32 articles. Graphs were saved
from pdf files using the Snipping tool. After a review of articles, two indepen-
dent raters identified data sets which represented a range of common configur-
ations in data (e.g., positive baseline trend, short data phases). We also
selected more complicated or unusual data configurations which may pose
challenges to analysis and interpretation. This created a sample of real (vs.
Monte Carlo simulation) data for comparison across methods. Two additional
raters were then asked to independently agree or disagree for consensus with
the representative descriptions of the graphs as to whether they met inclusion
criteria to “demonstrate strengths and weaknesses of the various analyses”,
simple agreement was 100%. The final sample included 15 graphs represent-
ing common variations in data sets which might affect effect size selection
and results. Raw data are typically represented graphically in SCR studies.
Given these original data, it is possible to convert these graphical data to
exact numerical form using digital conversion methods. Software packages
are widely available to perform this task. The availability of raw data in
SCR studies provides an opportunity to calculate any post hoc effect size.

Data extraction

For the current study, graphic data from published studies were extracted and
digitised in several steps. Details of the data extraction process are as follows.
First, graphs from published studies were saved as pdf files. Next, each graph

NONOVERLAP INDICES 473

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
2:

45
 1

0 
Ja

nu
ar

y 
20

15
 



was copied from the published articles using the Snipping tool from Microsoft
Windows 7. This digital snapshot tool captures just the image of the graphic
data which can then be uploaded into the digitising program (GetData Graph
Digitizer, Version 2.25, http://getdata-graph-digitizer.com). Next, each image
is loaded individually, and the scale for the X and Y axis must be set to match
the axis values within the graph. Following this procedure, each data point is
specified to assure exact concordance with the original study data.

Using these data, effect sizes were calculated by hand for IRD and using
the R syntax available online. Both effect size indices were calculated for
each graph. Confidence intervals and p values were calculated for Tau-U.
If multiple cases were present on an image, one case was chosen.

COMPARISON OF STATISTICAL EFFECT SIZE TO VISUAL
INTERPRETATION

Because we hoped to compare visual judgements about magnitude of effect
with a statistical effect size, we then had each of the 14 graphs visually ana-
lysed, first by one class of 13 doctoral (PhD) students and next by another
class of eight masters (MA) students. All graduate students had experience
in single case research methodology and design, including two or more
courses, clinic or field work, and were at the end of the semester in an
advance course on SCED. Each graph was presented as a Power Point slide
and students were presented one slide at a time and asked to characterise
the effect size as small, medium, or large. Students were specifically
instructed to analyse the AB contrast holistically rather than by attempting
calculations in their heads or by use of a single dimension such as variability
or overlap of data. The evaluation and recording for each student was done
independently. After visual analysis, results were compounded and are pre-
sented below each graph, alongside the effect size calculations.

RESULTS

A review of 25 years of Neuropsychological Rehabilitation produced 32
SCED studies and 15 demonstrations of “types” of data. IRD and Tau-U
effect sizes were run for each data set using an AB contrast. IRD p values
may be produced in many statistical packages by the feature that calculates
the difference between two proportions, under “proportion statistics” or
“risk analysis” (Parker et al., 2009). Tau-U is derived from the Kendall
Rank Correlation and the Mann-Whitney U, both of which rely on the S dis-
tribution for significance testing (see Parker et al., 2011b for more infor-
mation on calculating significance values).
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Where multiple data series are presented, the first data series was used in
the calculation of effect size and only the first baseline and intervention phase
were analysed if multiple phases were present. Effect sizes, p values, and the
visual analysis interpretations from masters and doctoral students trained in
SCED are reported as a frequency count of those judges who rated the
effect size as a small, medium, or large effect. For brevity we selected 10
illustrative graphs.

The first three figures (Figures 3, 4, and 5) demonstrate data which are vari-
able to some extent (Figure 3), sparse and overlapping (Figure 4), or have a
clear trend (Figure 5). Yet in each of these three cases, there is relatively
high agreement between two types of statistical analysis and independent
visual analysis. For example, IRD and Tau-U in Figure 3 were .15 and .09
(both small) with no statistical significance for the effect. IRD and Tau-U
for Figure 4 were .30 and .43 with no statistical significance; IRD and Tau-
U for Figure 5 were .86 and .91 (large) with statistical significance. Likewise,
the majority of the visual analyses agreed with the statistical analysis. Figures
3 and 4 were both rated by the majority as demonstrating small effects and
Figure 5 was rated as large. These examples serve to illustrate that statistical
analysis can be congruent with the decision making of most visual analysts
and may serve to clarify interpretation of effects when visual analysts dis-
agree by providing additional information such as statistical significance.

Figure 6 represents another common data scenario, few data points. Both
IRD and Tau-U produced an effect size of 1, but the p value tells us the result

Figure 3. From Wilson, C., & Roberston, I. H. (1992). A home-based intervention for attentional

slips during reading following head injury: A single case study. Neuropsychological Rehabilitation,

2(3), 193–205. Reprinted with permission. IRD ¼ .15; Tau-U ¼ .09; p ¼.68; Visual analysis ES

(S, M, L) MA ¼ 4, 1, 3; PhD ¼ 8, 2, 0.
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is not significant. This is a case where a p value for the effect size can inform
visual analysis. Eleven of 18 graduate students rated the effect as large, five as
medium, and two as small. When the two who ranked small were queried,
they said, “too few data points to be certain about the effects”, essentially
moderating the effect size with a human-determined significance test of
chance.

Using the top series in Figure 7, it is presented as it was in the journal with
a trend line. Visible trend lines can skew graph interpretation and decision
making (DeProspero & Cohen, 1979; Greenspan & Fisch, 1992; Hojem &
Ottenbacker, 1988; Skiba, Deno, Marston, & Casey, 1989). IRD and Tau-U
effect sizes were .12 and .43, p ¼ .07, demonstrating very different results.
Eleven of 18 visual analysts (61%) found the effect to be medium, three
rated the effect as small and four as large. Figure 8 also shows data rep-
resented by a trend line. Treatment demonstrates a descending trend, but

Figure 4. From McEwen, S. E., Polatajko, H. J., Huijbregts, M. P. J., & Ryan, J. D. (2010). Inter-task

transfer of meaningful, functional skills following a cognitive-based treatment: Results of three

multiple baseline design experiments in adults with chronic stroke. Neuropsychological

Rehabilitation, 20(4), 541–561. Reprinted with permission. IRD ¼ .30; Tau-U ¼ .43; p ¼.08;

Visual Analysis ES (S, M, L) MA ¼ 8, 0, 0; PhD ¼ 9, 3, 0.
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also displays variable data and overlap with the baseline data. The effect size
of .33 and .11 are both small and the p value is not significant. For visual
analysis, nine students rated the effect size as small, followed by seven
medium and three large, which reflects the influence that mean or trend
lines can play in decision making, in both cases overemphasising behaviour
change.

Figures 9 and 10 represent problems that occur with issues of scale. The
calculated effect size for both IRD and TAU was 1.0, p ¼ .06 and .04
level, respectively. Examining Figure 9, the visual analysis for all 19 students
categorised this effect size as small. Interestingly, if you look back at earlier

Figure 6. From McKerracher, G., Powell, T., & Oyebode, J. (2005). A single case experimental

design comparing two memory notebook formats for a man with memory problems caused by

traumatic brain injury. Neuropsychological Rehabilitation, 15(2), 115–128. Reprinted with

permission. IRD ¼ 1.0; Tau-U ¼ 1.0, p ¼ .12; Visual Analysis ES (S, M, L) MA ¼ 1, 2, 5; PhD

¼ 1, 3, 6.

Figure 5. From Arco, L. (2008). Neurobehavioural treatment for obsessive-compulsive disorder in an

adult with traumatic brain injury. Neuropsychological Rehabilitation 18(1), 109–124. Reprinted with

permission. IRD ¼ .86; Tau-U ¼ .91; p , .01; Visual Analysis ES (S, M, L) MA ¼ 0, 3, 5; PhD ¼ 1,

2, 8.
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figures you will see scales with variable ranges, some similar to this data
series where most students ranked the effect as large. These inconsistencies
due to scale are an important reason to incorporate effect sizes into any report-
ing of results. Figure 10 received more endorsement as a large effect, but
fewer than half the students recognised this change. These graphs illustrate
the importance of context. The statistical effect sizes are context free,
whereas visual analysis is usually conducted with an understanding of what
the data means (something our judges did not have). Thus, in scenarios like
this where there are large effect sizes with no overlap, only knowledge of
the context in which the data were collected will help one to determine the
meaning of 100% nonoverlap.

Figure 11 (using the VAS3 line; VAS stands for Visual Analogue Scale
and was a measure of positive mood) demonstrates a steadily decreasing
trend for 3 of 4 baseline sessions (5, 3, 2) with a large jump on the fourth
day (7). Intervention onset consists of the following data 7, 8, 8, 7, 6, 8.5,
8, 8.5. The decreasing baseline trend gives us one set of information, but
the rise to intervention level effect in baseline presents another. How does
one interpret this effect? Visual analysts rated this as small (5), medium
(11), and large (3). These judges showed very little consistency, but a

Figure 7. From Sunderland, A., Walker, C. M., & Walker, M. F. (2006). Action errors and dressing

disability after stroke: An ecological approach to neuropsychological assessment and intervention.

Neuropsychological Rehabilitation, 16(6), 666–683. Reprinted with permission. IRD ¼ .12; Tau-

U ¼ .43, p ¼ .07; Visual Analysis ES (S, M, L) MA ¼ 2, 5, 1; PhD ¼ 1, 6, 3.
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Figure 8. From Sunderland, A., Walker, C. M., & Walker, M. F. (2006). Action errors and dressing

disability after stroke: An ecological approach to neuropsychological assessment and intervention.

Neuropsychological Rehabilitation, 16(6), 666–683. Reprinted with permission. IRD ¼ .33; Tau-

U ¼ .16; p ¼ .51; Visual Analysis ES (S, M, L) MA ¼ 5, 2, 1; PhD ¼ 4, 5, 2.

Figure 9. From Rasquin, S. M. C., Van de Sande, P., Praamstra, A. J., & van Heugten, C. M. (2008).

Cognitive-behavioural intervention for depression after stroke: Five single case studies on effects and

feasibility. Neuropsychological Rehabilitation, 19(2), 208–222. Reprinted with permission. IRD ¼ 1;

Tau-U ¼ 1; p ¼.06; Visual Analysis ES (S, M, L) MA ¼ 8, 0, 0; PhD ¼ 11, 0, 0.
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tendency towards medium. The IRD effect size of .75 and the Tau-U of .88
with a p value of .02 indicates that, statistically, this effect is large and
significant.

Figure 12 demonstrates behaviour that does not change immediately with
the onset of an intervention, likely because the dependent variable (Hair
combing) required some development of skill that may not be immediate.
A steady and large increase is followed by a clear deceleration and then
another peak of improvement, and again a tapering off to resume baseline
levels of behaviour. If this were a pretest–post-test design, there would be

Figure 10. From Duval, J., Coyett, F., & Seron, X. (2008). Rehabilitation of the central executive

component of working memory: A re-organization approach applied to a single case.

Neuropsychological Rehabilitation, 18(4), 430–460. Reprinted with permission. IRD ¼ 1; Tau-U

¼ 1; p ¼ .04; Visual Analysis ES (S, M, L) MA ¼ 0, 6, 2; PhD ¼ 2, 3, 7.
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zero rates of behaviour at the beginning and zero at the end, demonstrating
no change. The behaviour did change along a trajectory that could be
captured with few points of data collection. Half of the visual analysts
scored this as a large effect, yet the two effect size indices agree that
this is more likely a moderate effect .78 and .57, yet it is statistically
significant at p , .01.

ADDITIONAL EXAMPLES

Finally, in addition to demonstrating the use of two statistical methods (IRD
and Tau-U) on 10 representative neuropsychological data sets and comparing
those effect sizes with visual analysis, we identified four graphs to further the
discussion of issues the single-case researcher faces when analysing data. The
graphs are based on published data, but were modified for illustrative
purposes.

Figure 13 results in a Tau-U ¼ –.91, p , .01, and an IRD of .48. Ignoring
the negative sign for Tau (which reflects the negative slope) there is a differ-
ence of .43, which is a large discrepancy between the two methods. In
addition, this is an example where having lots of data points allows Tau-U
to reach statistical significance, whereas the IRD of .48 suggests that there
was a moderate amount of data overlap between baseline and treatment
phases. In situations like this, it would be important to have a solid

Figure 11. From Rasquin, S. M. C., Van de Sande, P., Praamstra, A. J., & van Heugten, C. M. (2008).

Cognitive-behavioural intervention for depression after stroke: Five single case studies on effects and

feasibility. Neuropsychological Rehabilitation, 19(2), 208–222. Reprinted with permission. IRD ¼

.75; Tau-U ¼ .88; p , .02; Visual Analysis ES (S, M, L) MA ¼ 3, 5, 0; PhD ¼ 2, 6, 3.

NONOVERLAP INDICES 481

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
2:

45
 1

0 
Ja

nu
ar

y 
20

15
 



understanding of these data and the conditions under which they were col-
lected so one could determine the meaning of the change graphically dis-
played. It is unknown what the spike around session 78 means, but it
appears that the treatment was having an effect. Only by factoring in the
context of the study and how the data were collected and the variable
measured, would one be able to determine if the IRD of .49 more accurately
depicts the change (a fairly large degree of overlap) or if a statistically signifi-
cant effect size based on Tau-U is more representative.

In Figure 14 there is a clear treatment effect with Tau-U ¼ –1, p , .01,
and IRD ¼ 1. If one checks for baseline trend without first graphing these
data, one may erroneously conclude that trend should be corrected for and
report Tau-U ¼ –.03, p ¼ .79, when the baseline was corrected for trend.
This serves as a reminder to always graph one’s data and check the statistical
results with visual analysis to make sure they make sense.

Examining Figure 15 suggests baseline trend may be problematic. Correct-
ing for baseline trend results in Tau-U ¼ .22, p ¼ .33, whereas Tau-U with no
baseline correction is .74, p ¼ .02. IRD is .83, which is a difference of .44

Figure 12. From Bergego, C., Azouvi, P., Deloche, G., Samuel, C., Louis-Dreyfus, A., Kashel, R.,

&Willmes, K. (1997). Rehabilitation of unilateral neglect: A controlled multiple-baseline-across-

subjects trial using computerized training procedures. Neuropsychological Rehabilitation, 7(4),

279–293. Reprinted with permission. IRD ¼ .78; Tau-U ¼ .57; p , .01; Visual Analysis ES (S,

M, L) MA ¼ 2, 2, 4; PhD ¼ 0, 3, 5.
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after subtracting the baseline corrected Tau-U (.39). Although baseline trend
is apparent, most clinicians would probably view the IRD of .83 as consistent
with the treatment effect portrayed in Figure 15. If one corrects for baseline
trend using Tau-U, then the results are non-significant, whereas the non-
corrected Tau-U produces a statistically significant effect size. While Tau-
U controls baseline trend in a conservative manner, some have reported
tentative findings suggesting that the assumption that baseline trend continues

Figure 14. From Chadwick, P. (1994). Examining specific cognitive change in cognitive therapy for

depression: A controlled case experiment. Journal of Cognitive Psychotherapy, 8, 19–31.

Figure 13. From O’Kearney, R. (1993). Additional considerations in the cognitive-behavioral

treatment of obsessional ruminations: A case study. Journal of Behavior Therapy & Experimental

Psychiatry, 24, 357–365.
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into the treatment phase should be questioned (Parker, Vannest, Davis, &
Sauber, 2011b). Additionally, there is one point in the treatment phase that
overlaps with the baseline data points. How much weight one gives the base-
line trend and the final treatment data point may determine whether one views
the above graph as showing at least a moderate treatment effect versus a small
and non-significant one.

Figure 15. From Tollefson, N., Tracy, D. B., Johnsen, E.P., & Chatman, J. (1986). Teaching learning

disabled students goal-implementation skills. Psychology in the Schools, 23, 194–204.

Figure 16. From Bujold, A., Ladouceur, R., Sylvain, C., & Boisvert, J.-M., (1994). Treatment of

pathological gamblers: An experimental study. Journal of Behavior Therapy & Experimental

Psychiatry, 25, 275–282.
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The graph in Figure 16 produced a Tau-U ¼ .87, p , .01 and an IRD of
.57, which is a difference of .30 between the two methods. Because IRD
allows one to decide how data points are “removed” in its calculation, one
can get different results. In this graph, if one “removes” the three data
points in the baseline phase, the IRD is 25/25 – 3/7 ¼ 1 – .43 ¼ .57. If
one instead “removes” four data points from the treatment phase the IRD is
21/25 – 0/7 ¼ .84 – 0 ¼ .84. Thus, this graph is a good example of the
ability to manipulate IRD given phases with disproportional amounts of
data. Parker et al. (2009) “removed” the smallest number of data points in
their examples, but also state that “to the extent possible, data point
removal should be balanced across the contrasted phases” (p. 141). Thus,
how IRD is calculated may vary and no concrete rules have been developed
for its use. In the example above, most researchers would probably concur
that an IRD of .84 is an accurate effect size of the treatment effect portrayed
visually.

DISCUSSION

Studies consistently indicate low agreement between visual and statistical
results (Brossart et al., 2006; Jones, Weinrott, & Vaught, 1978; Park, Maras-
cuilo, & Gaylord-Ross, 1990; Rojahn & Schulze, 1985). Most of these studies
have methodological concerns (Brossart et al., 2006; Matyas & Greenwood,
1990) and the data from the present study demonstrate similar findings. Visual
analysis is confounded by variable data, trend, and scale. Statistical analysis
may be influenced by the same considerations so choices in analysis should be
informed by the type of data (number of data points, presence of undesired
trend in baseline or intervention, degree of overlap). Of the nonoverlap tech-
niques presented here, IRD and Tau-U were compared across 10 illustrative
graphs. First, these findings suggest that majority agreement between visual
analysts and statistical analysis can be expected in cases of reasonably
clear data even when visual analysts are not in perfect agreement. This
holds true for small non-significant effects and large statistically significant
effects. Second, we found that few data points can cause problems for
visual analysts who may not be able to account for chance or probability of
error in their assessment of a line graph. Third, we also found that the use
of mean or trend lines typically assists in agreement between visual raters,
but may not give “accurate” results in relationship to a statistical analysis
of effect. Studies on the effects of trend lines suggest that even significant
trends are unlikely to continue into the future. Specifically, the first five
data points in a series are statistically unlikely to look like the second set
of five (Parker, Vannest, Davis, & Sauber, 2011b). Fourth, another
common problem in visual analysis is related to the issue of scale. Statistical
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analysis can provide clear empirical evidence of nonoverlap to assist in
decision making when visual analysis can be misled. Even so, one must con-
sider the context in which the data were collected and the nature of the vari-
able being examined. Statistical methods can produce effect sizes, but they
cannot factor in the multiple ways that context can impact the interpretation
of one’s data. Fifth, some data sets are prone to produce inconsistency in the
visual analysis among multiple raters (e.g., Figures 8 and 11). Often these
graphs have variability in the baseline or treatment phase that makes evalu-
ation of the size of the treatment effect problematic. Some data sets will
have a range of variability in both phases that may also prove troubling for
visual analysts, but large amounts of variability are typically more of a chal-
lenge when combined with possible trend or just enough overlap to make the
treatment effect appear somewhat ambiguous. In such situations, calculating
one or more effect sizes can be an invaluable aid in evaluating the treatment
effect.

Based on the data presented here and in previous studies, we recommend
the following guidelines in selecting a statistical effect size analysis

1. Before conducting any data analysis conduct a design analysis, assess
your design for functional relationships. This provides the foundation
upon which interpretations of any effect sizes will be made.

2. Collect a sufficient amount of baseline data, particularly when trend
plays a role or is expected. Short baselines reduce the ability of the
visual analyst to interpret any treatment effect and increase the size
of confidence intervals.

3. Trend needs to be corrected conservatively because the likelihood of
trend continuation appears to be low. Trend is generally unreliable
and unpredictable. The relationship of the length of data to the over-
correction of trend is inherent in most calculations so caution should
be used.

4. Always conduct both visual analysis and statistical analysis, they
should inform and reinforce each other.

5. Because all methods for calculating an effect size have limitations, the
best practice may be to report multiple effect sizes. Reporting several
effect sizes based on differing conceptual foundations (regression,
dominance, overlap, etc.) will provide more information and should
aid one in arriving at a more accurate interpretation. Reporting multiple
fit indices is standard practice when one evaluates structural equation
models. Each fit index has particular strengths, limitations, and
meaning. Providing several fit indices aids in assessing model fit.
Reporting several effect sizes of single-case data may also aid in inter-
preting treatment effects.
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LIMITATIONS

This paper focused on one promising nonoverlap method (Tau-U) and issues
related to integrating an effect size with visual analysis. Tau-U is a technique
that is able to compare the baseline phase to the treatment phase, but it can
also control for baseline trend and account for trend in the treatment phase.
While this paper focused mostly on the comparison between baseline and
treatment phases, the other variations of Tau-U are included in the output pro-
duced by the R syntax available online: https://dl.dropboxusercontent.com/u/
2842869/Tau_U.R.

Inevitably, some problematic issues were not adequately discussed given
the small number of examples presented. For instance, autocorrelation was
not addressed and a limited number of illustrative problematic data sets
were included. Only nonoverlap methods were addressed; there are many
other statistical methods available for producing effect sizes. We also did
not discuss how to apply phase A and phase B effect size methods to other
design structures with multiple phases. This deserves additional research.
Such research would be relevant for a large number of clinicians and
researchers.

Some investigators, such as Wolery et al. (2010) and Haardorfer (2010),
have argued that overlap measures do not produce effect sizes. Carter
(2013) argues such notions are based on misconceptions about effect sizes,
overlap methods do address the magnitude of effects, but they cannot speak
to issues related to causality. Only a design analysis can address issues
related to causality. It is also worth noting that group designs are focused
on between-individual variation, whereas in single-case designs, the differ-
ences are based on within-individual variation. Thus, Carter (2013) notes
that the within-individual variation would usually be more constrained than
the variation seen between individuals and would produce relatively larger
effect sizes.

CONCLUSIONS

The purpose of this article was to present justification for the use of effect
sizes in reporting SCED results, to briefly review the steps for several non-
parametric effect sizes, to present a variety of exemplars and compare the per-
formance of IRD, Tau-U, and visual analysis, and to identify talking points
and recommendations for using effect sizes in SCED.

Both relative risk ratios and dominance methods such as IRD and Tau-U
have strengths to suggest their use, but neither is without limitations. The 2
x 2 table of IRD is easy to hand calculate, especially for short data series.
Tau-U can also be hand calculated using a matrix. To calculate confidence
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intervals, p values, or to analyse longer data sets, statistical programs are
likely to be necessary (e.g., https://dl.dropboxusercontent.com/u/2842869/
Tau_U.R).

These non-parametric “bottom-up” approaches are readily understood and
interpreted by interventionists. The logic in the analysis is consistent with
visual analysis and the results are informative in the interpretation of treatment
effects. Tau-U is particularly flexible given its ability to adjust for monotonic
trend, it works accurately with few data points, and Tau-U can work with
any type of design and any type of data. For example, there is no need for nor-
mally distributed data or interval data. If trend is present, it does not have to be a
linear trend to be workable and the correction is moderate for either a baseline
or an intervention phase. Tau-U has good statistical power of 91–115% of
parametric tests (Parker, Vannest, Davis, & Sauber, 2011b). It also performs
well in the presence of autocorrelation. Parker et al. (2011b) found that in
75% of the data sets they examined that had dangerous levels of autocorrela-
tion, Tau-U values changed little after autocorrelation was removed (the
remaining 25% showed larger changes in Tau-U values after autocorrelation
was removed, but this consisted of less than 5% of the data sets examined).
One limitation is that when 100% nonoverlap is obtained the method has
reached its limit in assessing the treatment effect. For instance, imagine two
data sets with 100% nonoverlap. One data set has the baseline and treatment
phase data close together, but maintains 100% nonoverlap. The other has con-
siderable distance between the baseline and the treatment phase. Both will
produce an effect size of 1.0 but the p value may prove helpful in that the
data set with minimal distance between phases will probably not achieve stat-
istical significance. It should be noted that if one examines other variations of
Tau-U, besides the phase A vs. B comparison, even with 100% overlap, the
Tau-U value produced may be less than 1.0, especially if one controls for
phase A trend. As a reminder, all statistical results must be interpreted in
light of the context in which the data were collected. Only by considering
the design analysis, the context in which the data were collected, the particular
nature of the variable measured, conducting visual analysis of graphed data,
and calculating one or more effect sizes based on different techniques, can
one accurately evaluate the treatment effect.
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