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Abstract This paper defines and promotes the qualities of a ‘‘bottom-up’’

approach to single-case research (SCR) data analysis. Although ‘‘top-down’’

models, for example, multi-level or hierarchical linear models, are gaining

momentum and have much to offer, interventionists should be cautious about

analyses that are not easily understood, are not governed by a ‘‘wide lens’’ visual

analysis, do not yield intuitive results, and remove the analysis process from the

interventionist, who alone has intimate understanding of the design logic and

resulting data patterns. ‘‘Bottom-up’’ analysis possesses benefits which fit well with

SCR, including applicability to designs with few data points and few phases, cus-

tomization of analyses based on design and data idiosyncrasies, conformation with

visual analysis, and directly meaningful effect sizes. Examples are provided to

illustrate these benefits of bottom-up analyses.

Keywords Single-case research � Methods � Visual analysis � Effect size

Introduction

The current special series discusses meta-analyzing single-case research (SCR)

designs and focuses on computing effect sizes. The purpose of this article is to

distinguish a ‘‘bottom-up’’ approach to analysis of data from SCR designs from the

‘‘top-down’’ approach typified by hierarchical or multi-level modeling (HLM,

MLM) (van den Noorgate and Onghena 2007, 2008), randomization (Kratochwill

and Levin 2010), and complex multi-series regression, either ordinary least squares

(OLS) (Allison and Gorman 1993; Huitema and McKean 2000) or generalized least

squares (GLS) (Maggin et al. 2011). Both approaches can be used to interpret data
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from a single study and to compile data into a meta-analysis. The term ‘‘bottom-up’’

refers to an analytic strategy that proceeds from visually guided selection of

individual phase contrasts (the ‘‘bottom’’) to combining them to form a single (or a

few) omnibus effect size representing the entire design (the ‘‘top’’).

Our view is that both bottom-up and top-down approaches are viable and

currently merit focused attention. This commentary highlights only the former,

while acknowledging the elegance and power of the latter, which yield an omnibus,

design-wide effect for an entire design through a single complex model.

The Case for Bottom-Up

Although top-down models such as MLM or HLM are gaining momentum and have

much to offer, behavior analysts should be cautious about top-down approaches for

four reasons. First, MLM and HLM analyses are not easily understood and may

require additional training to calculate or even to consume. Second, top-down

analyses are not governed by a ‘‘wide lens’’ visual analysis. In other words, top-

down analyses might provide sophisticated options for interpreting effects, but they

are not consistent with the traditional visual analyses and may not adequately

capture the entire effect. Third, top-down approaches do not yield intuitive results

and may result in behavior analysts reporting a score that they interpret by

comparing to a potentially arbitrarily determined criterion rather than thoroughly

understanding and interpreting the data. Fourth, top-down approaches remove the

analysis process from the behavior analyst, who alone has intimate understanding of

the design logic and resulting data patterns.

Bottom-up analysis possesses benefits that fit well with SCR, including

applicability to designs with few data points and few phases, customization of

analyses based on design and data idiosyncrasies, conformation with visual analysis,

and directly meaningful effect sizes (Faith et al. 1996; Parker and Vannest 2009).

We propose that there are four advantages to the bottom-up approach discussed

herein. First, bottom-up approaches are applicable to limited designs with short data

series and few phases. Second, bottom-up approaches make it possible to detail the

analysis to the idiosyncrasies of a design, including mid-study design changes and

unanticipated response patterns. Third, bottom-up analyses rely on simple

nonparametric analyses that yield directly meaningful effect sizes that are consistent

with the tradition of visual analyses. For example, percentage of nonoverlapping

data (PND; Scruggs and Mastropieri 2001) is a commonly used effect size for SCR

designs (Scruggs and Mastropieri 2001), likely because it is the estimate of effect

that is most directly aligned with visual analyses and easily interpreted. PND has

fundamental difficulties that we thoroughly discuss elsewhere (e.g., Parker et al.

2007) and cannot be used as an estimate of effect, but bottom-up approaches are

also consistent with the concept of data nonoverlap that aligns with visual analyses

and results in data that are proportional estimates of effect. Fourth, bottom-up

approaches keep the behavior analyst in control of the numerous decisions needed to

yield valid effect sizes. The last of these four points is the most general, and

supported by the other three.
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When the ‘‘bottom-up’’ analysis employs a distribution-free effect size, such as

nonoverlap of all pairs (NAP; Parker and Vannest 2009; also Burns et al. current

issue and Petersen-Brown et al. current issue) or TauU (Parker et al. 2011a, b), then

three additional advantages accrue: (a) the data are directly interpretable (as

nonoverlap) results from phase contrasts and for overall design, (b) the calculations

are easy, even by hand with short data series, and (c) behavior analysts avoid the

need for advanced statistical retraining. These additional three advantages further

help the behavior analyst remain in control of data analysis and interpretation.

These advantages also highlight potential pitfalls in the application of complex

omnibus models to SCR designs. Imagine a worst-case scenario: (a) omnibus or top-

down analytic models are built for a handful of common SCR design types, without

regard for peculiarities of each study, (b) the model is expressed in sophisticated

formulae not understood by the behavior analyst, (c) the behavior analyst, who

alone understands the intricacies of the design and resulting data patterns, is unable

to fully communicate this knowledge to a statistician, or (d) the intricacies of the

design and data patterns are successfully communicated, but the adjusted model has

uncertain validity (raises questions about data dependencies, sample size, and other

assumptions), (e) the behavior analyst cannot query the appropriateness of the

statistical model, as it is not visually accessible, and (f) the statistician provides the

interventionist with results that are not well understood without advanced statistical

training. A scenario containing all of these pitfalls together would be bleak indeed,

but in reality, we have seen one or more of these problems often enough to be

concerned. The statistical sophistication of omnibus models seems to be outpacing

two-way communication with interventionists and behavior analysts, who are the

only people with intimate understanding of the SCR design and data.

Data Analysis and Design Strength

The focus of this paper is SCR data analysis, the type that yields effect size (ES)

summaries of the amount of client behavior change. The presumption that an ES

also communicates the effectiveness of the intervention entails a causal inference,

which is separate from the ES, and may not be warranted. This causal inference,

which is the heart of conclusion validity (or internal validity), is legitimately made

only with a strong design (i.e., a design that strategically rules out other reasonable

explanations for the behavior improvement). Moreover, unlike group research,

initial specification of a strong design does not ensure that the resulting design will

be strong. Regardless of the strength of a specified design ‘‘on the shelf’’, the

obtained data must be visually examined for unexpected patterns and for

consistency of results across multiple (usually A vs B) phase contrasts. Visual

scrutiny of data patterns within and across phases may lead to the conclusion that

despite appropriate planning, the resulting design has degraded from strong to weak,

and is unable to support a causal inference. It can happen that phase contrasts that

were earmarked for ES calculation may be unusable, because of unexpected data

patterns. Thus, analyses prescribed by design-type or template may need to be

revised in light of actual data obtained. It is unfortunately true that any phase
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contrast can yield an ES, but the ES may not reflect improvement due to the

intervention.

An Example

Figure 1 shows a complex design, combining a multiple baseline design (MBD)

across subjects with an ABA reversal design in the top three tiers—Adam, Bob, and

Carol. A fourth tier (Dan) was intended as a control only. Added to the graph are

two nonstandard symbols. Short horizontal dashed lines represent the segment of a

baseline which serves as ‘‘concurrent baseline control.’’ The second symbol is a

downward arrow showing the intervention onset point controlled by the ‘‘concurrent

baseline control’’ below it.

The design was planned to have strong conclusion validity (one onset and

reversal in each of three tiers, and each intervention onset [arrows] having a

concurrent baseline control underneath it). However, visual analysis of data patterns

shows that these well-laid plans were thwarted. There is no reversal noted from B to

A2, at least not for Adam and Bob, so a reversal design analysis is not warranted.

Instead, an analysis plan must be individually constructed for these data.

Our visual analysis turns next to the MBD across subjects, composed of three

A1B contrasts with a control series. Having discarded the reversal design logic, does

strong MBD design logic still survive? Yes, because (a) the three phase B onset

arrows all have concurrent baselines (dotted lines) for comparison, (b) none of those

control segments show undesired improvement, which would signal that a

potentially confounding event caused client improvement, and (c) changes from

A1 to B for Adam, Bob, and Carol are all in the intended direction. Therefore, our

design and data patterns permit calculation of an ES for each of the three AB

A1 B A2Adam

A1 B

A1 BCarol A2

Bob A2

A1Dan

Weeks
1 2 3 4 5 6 7 8 9 10 11 12
l l l l l l l l l l l l l l l l l l l l l l l l

Time On TaskFig. 1 Example of a complex
multiple baseline design across
subjects
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contrasts, and combining them for an omnibus, design-wide ES, but visual scrutiny

has more to reveal.

A visual scan of the three B phases identifies two data patterns that have

implication for analysis. First, in Carol’s series, positive baseline trend exists, which

would confound our inference that the performance change from A1 to B can be

explained by the treatment alone. Supporting the conclusion of Carol’s phase A

trendedness is the trendedness of Dan’s control series. Baseline or pre-existing

improvement trend is a dreaded confound and must be controlled statistically.

Visual analysis also detects a second important data pattern with implications for

analysis: the phase B lag (by three or four data points) in improvement, which is

consistent across three tiers. This apparent ‘‘acquisition period’’ does not well

represent amount of change due to the intervention. A fair estimate of the impact of

treatment on phase B performance level (i.e., ES) would exclude the short lag

periods or incorporate them in a trend or change-point model.

From the preceding visual analysis, a bottom-up analytic model is finally built. It

is composed of three A versus B contrasts, from Adam, Bob, and Carol, each of

which has a concurrent baseline control, so we claim high conclusion validity for

the omnibus result. The statistical model for each contrast can be a level difference

only, with two provisos. First, we need to set a rule (and report to readers) to

exclude phase B data in the first three observations (acquisition period). Second, the

baseline trend must be controlled in Carol’s baseline. The distribution-free TauU is

suitable for these tasks.

After the three A versus B contrasts are calculated, leading to a TauU ES for Adam,

Bob, and Carol, the three ES are combined. The most defensible combination method

is to take their average, after weighting each one by the inverse (reciprocal) of its

variance (Wtbob = 1/Varbob) (Hedges and Olkin 1985; Sanchez-Meca and Marin-

Martinez 2010). So Bob’s weighted ES is ESbob*Wtbob. This weights more heavily the

ES with the lowest bounce in its series, which also tend to be longer series. The three

weighted ES are added together, and their sum is divided by the sum of the weights.

The result is an averaged, overall, or omnibus TauU ES. The final step is calculation of

a standard error (SEomnibus) of this omnibus ES. The most defensible calculation is to

take the root of the inverse of the sum of the weights SEomnibus = sqrt(1/

(Wtadam ? Wtbob ? Wtcarol)) (Borenstein et al. 2007). With this SE, a p value and

confidence intervals can be calculated for the omnibus ES.

In summary, visual analysis is required to guide the ES calculation process. First,

visual analysis can show which design logic has survived data collection. In the

example, a combined MBD and reversal design was planned, but the reversal design

was nullified by results. Visual analysis also confirmed consistency of results across

Adam, Bob, and Carol, which is required for a valid MBD design that permits

conclusion validity. Visual analysis detected which phase contrasts were legitimate

and could be combined together for an omnibus ES. It also told us what level of

conclusion validity that omnibus ES would have (strong in our example). Visual

analysis also determined that a level shift analysis was sufficient for Adam and Bob,

but not for Carol, who required a unique analytic strategy to control baseline trend.

The example design and data demonstrate a desirable sequence for bottom-up

analysis of SCR data guided by visual analysis: (a) implementation of a design that
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was planned to possess medium or strong conclusion validity, (b) broad lens visual

analysis of response patterns across phases to determine whether the planned design

was supported, nullified, or supported in a modified form, (c) selection of particular

phase contrasts, following the logic of the supported design, (d) visual scanning to

note consistency of responding across the chosen phase contrasts, and (e) narrowly

focused visual analysis of response patterns within phases to determine potential

influence by external events and to choose a fair ES calculation method. Following

these five steps (driven by visual analysis), an ES may be calculated, which has a

known degree of conclusion validity. These final calculations are described next.

Effect Size Calculation

Perhaps the most flexible ES index for bottom-up analysis is TauU (Parker et al.

2011a, b). First, it is nonparametric, distribution-free, and suitable for data with any

distribution shape and for any type of scale. Second, it has strong statistical power

(at least 91–95 % that of OLS regression), so is suitable for even short data series.

Third, it permits statistical control of potentially confounding baseline trend, if it

exists. Fourth, it is congruent with traditional visual analysis, as it is based on data

nonoverlap between phases.

TauU is easily calculated by hand for very short data series, but for designs such

as our example, a Kendall’s Rank Correlation module should be used. Among our

favorites is the inexpensive StatsDirect (2002), designed for medical research. Also

suitable is the web-based calculator from the open-source R statistics (Hornik 2012)

program. Both of these options require a few hand calculations on the statistical

program output (Schwarz 2007), as detailed by Parker et al. 2011a, b. More user-

friendly is the dedicated web-based calculator offered by our SCR research group at

http://www.singlecaseresearch.org.

The TauU ES for each selected phase contrast are saved, along with their

respective standard errors (SE). The final step is to combine those ES and their SE

for one omnibus ES and SE, which is accomplished by a meta-analysis or multi-tier

analysis statistical module. Contrary to its name, an omnibus ES will not always

make use of all possible phases or phase contrasts, as seen in our example, and more

than one omnibus ES may need to be calculated from a single design’s data in order

to answer two or more research questions. The statistical procedure for hand

calculation was described in detail above. Here, we rely on real data, and menu-

based calculations, which readers can replicate.

Analysis Results

Manufactured data to roughly represent the Fig. 1 example are the following:

Adam, (3, 2, 2, 3, 2/2, 3, 2, 4, 5, 6, 5, 7/6, 5, 4, 5, 3); Bob, (2, 3, 2, 3, 2, 3, 3/2, 3, 3, 3,

5, 7, 6, 8/7, 7, 6, 7, 6, 5, 4, 5); Carol, (1, 1, 2, 2, 3, 2, 2, 3, 3/3, 3, 3, 5, 4, 6, 6, 7, 7/4,

5, 5, 6, 5, 6); and Dan, (2, 3, 1, 2, 3, 1, 1, 3, 4, 2, 3, 4, 2, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 5,

4). Using the \singlecaseresearch.org[ TauU calculator, we input phase A and B

data for Adam, Bob, and Carol, in turn. We delete the first three phase B data points
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(acquisition period) for all clients. The web-based calculation gives us the following

TauU ES (with SE): Adam, 1.0 (.365); Bob, .886 (.352); Carol, .593 (.314). For

Carol’s analysis only, we click the ‘‘control baseline’’ option. Without this option,

her TauU would be much higher (i.e., 1.0). The three ES can now be combined

arithmetically, by formulas presented above. Or we can use the multi-tier analysis

program, WinPepi (Abramson 2012). Within WinPepi, we select the menu:

‘‘Compare2‘‘�’’i. Any of the above for multi-strata‘‘�’’Other, with SE/

CI’’�select ‘‘Standard Error’’. Then enter each ES and its SE as one stratum and

click ‘‘next stratum.’’ Repeat until all three strata have been entered then click ‘‘All

strata’’ to obtain the omnibus TauU ES with its SE. The 90 % confidence intervals

around the omnibus TauU are also provided.

For our example data, overall TauU = .80, with SE = .20, which is highly

significant (\.000). So across all phase contrasts included, 80 % of treatment scores

exceeded all baseline scores. This design-wide 80 % nonoverlap between phases is

believed to represent the treatment effect, because it was obtained from a design

with three AB phase contrasts, each of which was validated by a baseline in a

separate series, concurrent with the intervention onset.

Issues in Bottom-Up Analysis

Next are discussed some issues or unresolved questions in conducting a bottom-up

analysis. In fact, these same questions also apply to top-down analyses, but for

bottom-up, they are more sharply defined.

Which Phase Contrasts in a Reversal Design?

A reversal design such as A1B1A2B2 contains three adjacent phase contrasts: A1

versus B1, B1 versus A2, and A2 versus B2. All three contrasts must contribute to the

predicted response pattern (weak, strong, weak, strong) in order for the design to

possess conclusion validity. But should all three contrasts be included in the

calculation of the omnibus effect size for the ABAB design? The question is

whether B1 versus A2 (the reversal) measures the same sort of intervention effect as

does A1 versus B1. When behavior does not fully reverse (regress to baseline levels),

B1 versus A2 can be small, even when treatment onset (A1 vs B1, A2 vs B2) causes a

large change. This question has not been well discussed in the literature, but at

present it seems best to omit the reversal contrast (B1 vs A2) from effect size

calculation.

Figure 2 shows an ABABAB reversal design, which demonstrates substantial

maintenance of improvement after treatment is withdrawn. The A versus B contrasts

consistently show greater behavior change than do the B versus A contrasts,

although both are consistent. A gradual improvement trend is noted through all

phases due to maintenance.

Effect sizes are intended to communicate positive change due to treatment

implementation. They are not intended to represent deterioration in behavior when

the treatment is removed—that is a conclusion validity concern. In this example,
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including B versus A contrasts in the calculation of an omnibus ES would seriously

underestimate the improvement effect. This issue deserves discussion.

How to Control Confounding Baseline Trend?

Pre-existing improvement trend in baseline clearly confounds the inference that the

treatment caused the behavior change. Statistical control of baseline trend is

possible, reflected in the extended celeration line model of White and Haring

(1980), and the regression model of Allison and Gorman (1993), among other

models. These two models have been most popular, both controlling by trend line

slope. The baseline slope is subtracted (semipartialled) from the entire data series,

and then the main analysis is conducted on the remaining or residual scores.

However, trend line slope control faces three major criticisms, (a) the ES reduction

undesirably depends on the length of phase B; a long enough B phase will over-

control trend, reducing the ES to zero or to negative (deteriorating) values, (b) it is

not unusual for phase A trend control to project impossible future performance,

beyond the limits of the score scale, casting doubt on the whole procedure, and

(c) trend line slope control is conducted without regard for the reliability of the trend

line. A lengthy phase A trend with many values tightly clustered around the trend

line (low variability and high reliability) will be treated the same as a very short,

very bouncy and hence very unreliable baseline trend line.

Figure 3 graphically depicts three weaknesses of traditional (Allison et al. 1996;

White and Haring 1980) control of positive linear baseline trend. The top graph

contains original data, with a potentially confounding improvement trend in

baseline. The baseline trend line is extended through phase B. The bottom graph

shows the result of removing phase A trend from the entire data set. Although this is

a fabricated (drawn) line graph, the change between the top and bottom graphs is

accurate, using a graph rotation (GROT; Parker et al. in press) method which

exactly replicates the Allison et al. (1996) trend control method.

This example shows three undesirable features, very short baseline phase, highly

variable baseline trend, and long treatment phase. Controlling this short, unreliable

phase A trend would excessively impact the long treatment phase, forcing the

strange conclusion that controlling for baseline trend, the client severely deterio-

rated in phase B. This extreme example would also lead us to conclude that by the

middle of phase B, the client’s behavior would be so severe as to fall off the bottom

of the score scale. Such extreme examples are not rare and call for both cautious

application of trend control and alternative methods of doing so.

Alternative methods of controlling baseline trend exist, including (a) control not

of trend, but of the proportion of variance (R2) accounted for by trend (yielding

A1 B1 A2 B2 A3 B3

Pat

Fig. 2 Example of ABABAB
reversal with increasing
maintenance of improvement
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more moderate results), (b) control of trend by amount of variance accounted for by

phase A trend (also more conservative), and (c) control not of linear trend, but of

nonlinear monotonic trend (much more conservative). TauU employs two of those

options. First, it controls not linear, but monotonic trend. Second, it subtracts a finite

amount of baseline trend, rather than projecting it out into the future as a vector.

This issue of how to best control baseline trend was raised over a decade ago

(Scruggs and Mastropieri 1994, 1998, 2001), but has not benefitted from recent

debate in the published literature.

Adjacent Contrasts Only?

The cautious approach to selecting pairs of phases for contrast analysis is to restrict

analysis to adjacent phases. But cases exist where design logic and data patterns

suggest a more liberal approach. Figure 4 portrays an alternating treatment design in

which, for ethical or pragmatic reasons, there was no attempt to return to baseline.

The question is, which contrasts are warranted? At minimum, A versus B1 is

acceptable, but that would include only 40 % of available data. The broader A

versus (B1 ? B2) contrast would be desirable because the additional B2 data reduce

its measurement error. The best argument for this broader contrast seems that B1

and B2 response patterns are so similar.

Another contrast we would like to be able to make is A versus C1 or even A

versus (C1 ? C2), but note that there is no A phase contiguous with C. There seems

Fig. 3 Three weaknesses of
traditional control of positive
baseline trend

Fig. 4 Example of alternating
treatment design
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to be justification for contrasting nonadjacent pairs (assuming, of course that the

contrast follows the design logic) in cases like the Fig. 4 example, where responses

in C have demonstrated independence from B. In this example, independence is

noted by a repeated pronounced drop in behavior on switching from B to C. A

counter-argument to accepting the A versus C1 contrast and ES is that in this design,

the effects in C are always contaminated by the effects of B. Adherents to the

adjacent contrasts only rule would likely find the above design flawed and

recommend replacement with ABCACB series that permits clean AB and AC

adjacent contrasts. An even more critical conservative point of view would require

two separate, shorter data series, ABC and ACB, to permit adjacent contrasts only.

The conservative adjacent contrasts only rule has some traction (Horner et al.

2005), and its caution is appealing. However, other researchers have recommended

using all phases of a design to compute ES (Maggin et al. 2011). One should not

discard data without reason, but it is difficult to see how all phases can always have

a legitimate role in bottom-up analysis of many designs. To conclude, whether to

permit contrasts other than for adjacent phases is an unresolved issue, and one that

has received little attention in the literature.

Conclusion

This paper described a bottom-up analytic strategy for SCR design data, describing

its major benefit as a very close linkage to, and governance by visual analysis.

Additional benefits accrued from use of a new, powerful TauU (nonoverlap?trend)

ES. The bottom-up strategy is distinct from a top-down strategy in which an overall

or omnibus analytic model is fit to the entire design. Whereas top-down appears

more elegant, it entails a marked risk, which is to ignore the idiosyncrasies or

uniqueness of a design and its data patterns. It is true that any template can be

modified, but to do so in HLM, for example, requires statistical skills beyond those

of most interventionists. This raises the broadest concern with the top-down analytic

strategy because the behavior analyst is not able to maintain decision-making

control, may not even be able to confirm the legitimacy of a model fit, and may not

even be able to interpret the results. Sophisticated, omnibus analytic models appear

insufficiently governed by thoughtful visual analysis by the informed intervention-

ist. Visual and statistical analysis becomes disconnected, with risk to the validity of

results and conclusions.

In group research, standard designs are typically followed, and the resulting data

can be analyzed almost automatically, or by template. Knowing only the design and

procedures, one can ascribe a level of conclusion validity. But SCR presents three

major challenges not present in group research. First, interventionists employ not

just a few main design types, but rather myriad variations. Behavior analysts are

encouraged to blend design types for greater efficiency and to better meet local

exigencies (Kazdin 2010). Second, which phases to include in an analysis cannot be

known until client response patterns can be visually scrutinized. Response patterns

such as delayed or lagged responding, unplanned maintenance of learning,

unexpected growth trends in data, and drops or spikes in response levels in
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apparent reaction to external influences all make a difference in which phases

should be contrasted, and whether trend should be included. The third challenge

relates to conclusion validity. Any SCR design has an ‘‘on the shelf’’ level of

conclusion validity, based on the number of important phase contrasts, number of

behavioral reversals, and number of key contrasts with concurrent baseline control,

but the actual validity of the design may be considerably weaker, as it also depends

on data patterns and consistency. Only visual analysis can tell the final strength of

the design. The visual analyst looks first at response patterns within and between

phases. Next, the analyst looks for consistency in responding across important

contrasts. Lack of consistency in responding can invalidate a design. The need for

continued visual analysis to establish level of conclusion validity is unique to SCR.

The debate on visual versus statistical analysis of 10 years ago has matured to a

search for how visual and statistical analysis can be mutually complementary. Our

contention is that visual analysis must govern statistical analysis and that the

complex analytic process best remains in the hands of the behavior analyst.

Moreover, it is helpful to invoke a simple, accessible, and intuitive ES index such as

TauU. Visual analysis can inform us about which data to analyze, how to analyze it,

and even what conclusion validity the omnibus ES will have. The bottom-up

analytic model, which, informed by visual analysis, proceeds additively, contrast-

by-contrast, seems most likely to keep the knowledgeable behavior analyst in

control.
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