Defensible Progress Monitoring Data for Medium- and High-Stakes Decisions
Richard I. Parker, Kimberly J. Vannest, John L. Davis and Nathan H. Clemens
J Spec Educ published online 19 July 2010
DOI: 10.1177/0022466910376837

The online version of this article can be found at:
http://sed.sagepub.com/content/early/2010/07/14/0022466910376837

Published by:
Hammill Institute on Disabilities

and

http://www.sagepublications.com

Additional services and information for The Journal of Special Education can be found at:

Email Alerts: http://sed.sagepub.com/cgi/alerts

Subscriptions: http://sed.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav
Defensible Progress Monitoring Data for Medium- and High-Stakes Decisions

Richard I. Parker1, Kimberly J. Vannest1, John L. Davis1, Nathan H. Clemens1

Abstract
Within a response to intervention model, educators increasingly use progress monitoring (PM) to support medium- to high-stakes decisions for individual students. For PM to serve these more demanding decisions requires more careful consideration of measurement error. That error should be calculated within a fixed linear regression model rather than a classical test theory model, which has been more common. Seven practical skills are described for improving the use of PM data for medium- to high-stakes decisions: (a) estimating a static performance level in PM, (b) fitting a level of confidence to an educational decision, (c) expressing an estimated score (Yhat) with its measurement error, (d) judging reliable improvement from one time to a later time, (e) properly using slope versus trendedness, (f) expressing “rate of improvement” (slope) with error, and (g) controlling autocorrelation. An example data set and PM graphs are used to illustrate each.

Keywords
progress monitoring, curriculum-based assessment, research methodology

Progress monitoring (PM) is being recommended for medium- to high-stakes decisions about individual students, principally within a response to intervention model (Good, Simmons, & Kame‘enui, 2001; McGlinchey & Hixson, 2004; Stage & Jacobsen, 2001). Such decisions can include referral for special education services or even eligibility for these services (Bolt, 2005; Brown-Chidsey & Steege, 2005; Gresham, 2002; Holdnack & Weiss, 2006; Restori, Gresham, & Cook, 2008). They may include important changes in long-term educational goals or changes in instructional settings (Hagan-Burke & Jefferson, 2002). They may entail a more restrictive environment as legally defined by least restrictive environment (Kavale & Forness, 2000; Will, 1986). They may change a student’s social network or opportunities to socialize (MacMillan, Semmel, & Gerber, 1996). Serving such decisions is a distinct change from using PM data within a class by a teacher as a weekly or monthly guide for modifying instruction (Deno, Fuchs, Marston, & Shin, 2001; Hosp, Hosp, & Howell, 2007). From the early 1980s to present, PM has been thrust into a new arena of decision making that insists on higher measurement standards (Deno, 1985, 2003; Fuchs, Fuchs, Hamlett, Waltz, & Germann, 1993). Data used for medium- to high-stakes decisions should include measurement error, so the likelihood of a wrong or “regrettable decision” will be known (Ardoin & Christ, 2009; Goodman, 1999; Hintze & Christ, 2004). The technical expression of that error is the “standard error of measurement” (SE) and its useful form is as confidence limits, confidence boundaries, or confidence intervals (CIs) around an observed or estimated score (Shek, 2007). CIs around effect sizes are for many applied researchers supplementing or even replacing null hypothesis testing and p values (Browne, 1979; Payton, Greenstone, & Schenker, 2003; Schenker & Gentleman, 2001).

Special educators are accustomed to dealing with assessment scores, and many are familiar with the error bands or CIs placed around formal test scores such as intelligence quotients. However, these CIs in most cases are based on the SE as defined by classical test theory (CTT), which is not comprehensive enough for PM data. This article promotes the use of more comprehensive SEs and CIs from fixed linear regression rather than those in common use from CTT. The purpose of this article is to offer practical procedures for summarizing and expressing PM results so they are suitable for medium- and high-stakes decisions.

1Texas A&M University, College Station, TX, USA

Corresponding Authors:
Richard I. Parker, Texas A&M University, 604 Harrington Office Building, Mail Stop 4225, College Station, TX 77843
Email: rip_parker@msn.com
For school-based assessment other than PM, the measurement model most commonly relied on is CTT, also termed the “true score” model (Christ & Coolong-Chaffin, 2007). CTT was the basis for most measurement studies on curriculum-based measures (CBMs) first undertaken at the University of Minnesota three decades ago (Deno, 1985; Deno, Deno, Marston, & Marston, 1987). Foundations of CTT have long been taught in measurement courses and include procedures for obtaining test–retest, alternate form, and split-half reliabilities (Crocker & Algina, 1986). A summary of oral reading fluency probes from the 1980s to the 1990s might conclude that the probes are highly reliable for use in PM because their “alternate form reliability was .92.” Such statements about reliability are appropriate for single-administration assessments within a CTT model but are inadequate when decisions about an individual student are assessed over several administrations, as in PM. CBM researchers have recently discovered that alternate form reliability in a CTT model is a poor predictor of how a measure will perform in repeated administrations over time (Deno et al., 2001; Francis et al., 1994; Fuchs & Fuchs, 2002). When reliability is more broadly conceived, as by a generalizability theory study, PM data show variability, bounce, or error over time that are not captured by CTT alternate form reliability (Poncy, Skinner, & Axtell, 2005).

An attractive alternative to CTT that does fully capture measurement error from PM over time is “time series fixed linear regression,” here termed TSLR. TSLR defines measurement error more broadly from multiple sources: differences among probes (alternate forms), differences between two time points (retest), differences among several time points, and deviation from the mean level. TSLR’s broader measurement error includes the valuable notion of “sensitivity to growth over time.” The multiple sources of error captured within a TSLR analysis are not individually distinguished, but for practical decision making they do not need to be. It is sufficient that TSLR captures measurement error more comprehensively than CTT, including sources of error over time that the CTT model cannot. For practical decision making, users of PM do not need to identify various sources of error but only express the sum of this error along with obtained scores.

CTT retest and alternate form reliability studies on sets of probes, for example, for reading, math, and spelling, can still help improve the measurement quality of the probes. But the CTT traditional expression of error in a student’s individual score \(\text{SE}_{\text{Meas}} = \sqrt{1 – \text{reliability}} \) is inadequate for PM. In TSLR, that error expression is replaced by a more comprehensive index foreign to the CTT model: “the SE for a temporally proximate group of estimated scores \(\text{Yest} \),” or \(\text{SE}_{\text{Yest}} \). Although the CTT \(\text{SE}_{\text{Meas}} \) expression above adequately summarizes error between two test administrations, only \(\text{SE}_{\text{Yest}} \) includes additional sources of error from repeated administrations over time in PM.

For special educators, school psychologists, and other assessment specialists in schools, the use of PM for medium- and high-stakes decision making requires new skills in summarizing and interpreting scores. The purpose of this article is to present seven practical skills in PM assessment that are unlikely to have been learned through graduate coursework based on the CTT measurement model, nor are they easily obtained from leading regression texts for social science research. They are the following:

1. Estimating a static performance level in PM
2. Fitting a level of confidence to an educational decision
3. Expressing an estimated score \(\text{(Yest)} \) with its measurement error
4. Judging reliable improvement from one time to a later time
5. Properly using slope versus trendedness
6. Expressing “rate of improvement” (slope) with error
7. Controlling autocorrelation

Together, these skills and understandings should arm special educators and others to make effective use of PM data for important school decisions. None of these skills or understandings are new; all have been applied in articles and texts on fixed linear regression and with \(N = 1 \) time series data. But this information comes from other applied fields and is seldom if ever applied to measurement in schools.

Graduate measurement courses and texts in education offer little guidance on the use of PM data. The authoritative social science linear regression text by Cohen and Cohen (1983) gives only three pages to measurement error in simple regression, and the newer edition by Cohen, Cohen, West, and Aiken (2003, pp. 44–45) reduces this section to two pages. Similarly, the classic Pedhazur (1982, pp. 26–30) linear regression text gives only four pages to the same topic. These are texts for researchers, not decision makers. By contrast, applied regression texts widely used outside of education provide extensive guidance on the same topic: 37 pages in Draper and Smith (1981, pp. 17–54), 23 pages in Neter, Wasserman, and Kuttner (1983, pp. 60–83), and more than 60 pages across several chapters in Graybill and Iyer (1998). Editions of the Neter et al. text have been a leading authority for practical applications of regression over nearly three decades and are a key source for this article. The most recent Neter text is Applied Linear Regression Models (Kutner, Nachtsheim, & Neter, 2004).

The remainder of this article presents the seven skills listed earlier, each with sample data and a graphic illustration. Technical language and formulas have been reduced to a minimum. For some skills a “technical notes” section has been added, containing additional details of interest to researchers but not essential for practitioners.
I. Estimating a Static Performance Level

PM data often are summarized dynamically, as trend line slope, or “rate of improvement per unit of time.” But PM data also offer valuable summaries of static performance, that is, at a fixed point in time. Figure 1a presents typical PM data collected weekly over 15 weeks. In Figure 1b, two methods are demonstrated for obtaining reliable estimates of static performance from these scores, one method applied to performance at Week 2 and the second method to performance at Week 12.

The first method, applied at Week 2, is termed “multiple trials” in applied regression, which translates to “multiple probes” in PM. A minimum of three (some experts permit as few as two) independent probes are administered at Week 2 (41, 43, 47), an increase over the apparent normal schedule of one per week. These scores are not averaged but are entered individually, all at Week 2. As shown in Figure 1b, the best estimate of student performance at Week 2 is neither the median of these three scores (43) nor their mean (43.67). The best estimate is instead the point on the linear regression trend line (black dot) that equals 45.2. This 45.2 value is termed an "estimated score," or Y_{est}. For practical decision making, guidance comes from texts in business, health, and the physical sciences (Armitage, Berry, & Matthews, 2002; Draper & Smith, 1998; Graybill & Iyer, 1998; Neter, Kuttner, Nachtsheim, & Wasserman, 1996). These texts offer multiple examples of a Y_{est} score whose SE, SE$_{Y_{est}}$, is based on a small “group of scores” or “multiple observations” at one time, as few as two, although three is commonly recommended (Neter et al., 1996). The data may be from a single respondent, and the remaining times may contain only one data point. The multiple (minimum three) observations must be independently obtained, that is, “independent trials,” but may be from the same respondent (Neter et al., 1996). The second aggregation method of “approximate repeats” is referred to explicitly by Draper and Smith (1998, p. 42). Proximal aggregation also is used in other texts, but without being named.

2. Fitting a Level of Confidence to an Educational Decision

Few within-classroom (lower stakes) data-based decisions need to consider measurement error. This article focuses only on medium- and high-stakes decisions made from an individual student’s PM data. These decisions require that score summaries be expressed with their known measurement error. But there is a prior step—choosing a “level of confidence,” such as 80%, 85%, 90%, or 95%. Selection should be based on our willingness to accept the costs of making an error, wrong decision, or “regretted decision” (Goodman, 1999). Selection of a 95% level of confidence means willingness to accept wrong decisions at the rate of 5 per 100 (1 per 20). By contrast, selection of an 80% level of confidence means tolerance of a much higher rate of “regretted decisions”: 20 per 100 (1 per 5). Judging the social-emotional, physical, and financial costs of an error is required in a field such as medicine (Djulbegovic, Hozo, Schwartz, & McMasters, 1999; Ioannidis, 2005), but schools have little such experience. In schools, unlike in medicine, regretted decisions may be reviewed and even...
reversed, which argues for a less stringent level of confidence. However, the effects of a regretted decision may not be fully reversible. The stigma of labeling, special class placement, disruption of a social network, and lost opportunities to learn may not be fully reversible.

Presently, one-shot and pre–post assessments in schools commonly employ a CTT-based 95% confidence level, as recommended by test producers. Lower levels of 90% or 85% are uncommon. But as PM data are used for a range of decisions, these lower levels can serve for medium-impact, reversible decisions made every few months. The 85% level will better serve in-class decisions that are more easily reversed and may be reviewed every few months or so. The 90% level may serve decisions lasting a semester or year but that are open to review within this time and can practically be reversed. The 95% level of confidence (tolerating only 1 erroneous decision per 20) should be reserved for decisions with the highest risks: those with substantial social or educational impact, those with lasting impact, and those that are not easily reversible (American Educational Research Association, American Psychological Association, & National Council on Measurement in Education, 1999).

The problem with selecting a 95% level for low-impact, within-class decisions is that much PM data will possess too much error. Decision making is paralyzed when measurement error of an assessment exceeds the desired level of confidence. Thus, schools should choose the minimum level of confidence for a tolerable error rate. Practical data-based decision making requires a match among (a) the costs of making an error, (b) a selected level of confidence, and (c) measurement error in scores. This first of these three is a social judgment. The second and third are reflected (respectively) in (a) the selection of a confidence band or interval for a score and (b) the actual width of that band around the score.

3. Expressing a Yest Score With Its Measurement Error
Expressing a Yest score along with its CI expresses the score’s measurement error and signals to decision makers the limits on the score’s practical usefulness. Including measurement error with a Yest score is important when the score is to be used for serious decisions. The previous section focused on the early step of choosing a level of confidence well matched to the social consequences of the decision. This section demonstrates how the CI around a Yest score is expressed and interpreted.

Figure 2 depicts three confidence bands or intervals around two estimated Y (Yest) scores. Note that both Week 2 and Week 12 are represented by three data points. For Week 2 performance an 85% CI is shown, and for Week 12 both 80% and 95% intervals are shown. These three levels of confidence would be appropriate for three different types of decisions with different “costs of an erroneous decision.” The CI is defined by its upper and lower limits, which are provided in Figure 2. One can be “quite sure” (80%, 85%, or 95% sure) that the true value for the calculated Yest score is somewhere between the upper and lower CI limits.

For example, it can be said about static performance at Week 12 that “we are 95% certain that the true performance level is somewhere between 52 and 56.8.” This high 95% level of confidence results in a wider CI than does the modest 80% level. With a wider CI we are less certain of where the true score lies and so less able to make needed decisions. Data may be useless for high-stakes decisions requiring a 95% confidence level but adequate for lower stakes decisions requiring an 80% confidence level, hence the need to use data with low measurement error for high-stakes decisions that require a high level (95%) of confidence.

Technical notes. Considerable confusion exists about CIs from linear regression (Schwarz, 2007). The Yhat being estimated near the center of the interval is not an individual score but rather a population mean parameter and must accordingly be based on multiple obtained scores at one time (Draper & Smith, 1998). Yet for a single client only one score typically exists at each time period, so some feel compelled to use the very unfavorable PI, which is often 2 to 3 times wider than the CI. But that use of a PI is not correct; the PI is for a “single new score,” and one not used within the calculation of the PI (Draper & Smith, 1998). For PM, error is not desired for a “single new score” but rather for the most stable estimate of student ability at a given time, which is Yest. We do caution that the ability of PM to use the CI rather than the PI does require multiple scores entered at the estimation time, hence the two methods presented earlier: multiple probes and “approximate repeats.”

The CI and the PI are both directly output from most linear regression programs, calculated from their respective SEs. The SE for the CI around a mean is $SE_{Y_{\text{that}}} = (MSErr)^{1/2} * [1/N + ((X - X)^2) / (V_{AR} * (N - 1))]^{1/2}$. For the PI around an
individual score, it is $SE_{est} = (MSErr)^{1/2} \times [1 + (1/N) + ((X – X)^2/ (VAR \times (N – 1)))^{1/2}$. The two formulas are identical except for the addition of a 1 under the radical sign of the SE for the PI. This small difference inflates the PI so much that textbooks warn against attempting to use the PI for practical decision making with most data (Armitage et al., 2002; Draper & Smith, 1998; Graybill & Iyer, 1998; Neter et al., 1996). Using an example from Figure 1b, the 80% CI for Week 12 scores was 52.9 to 55.9, 3 points wide. The 80% PI for an individual score at Week 12 is 49.8 to 59.0, which is 9.2 points wide. The PI width more than 3 times the CI width is typical.

From regression, the SE of the estimate (SE_{est}) is sometimes erroneously thought to be an SE for individual scores. In fact, SE_{est} is a misnomer (Kozak, Kozak, Staudhammer, & Watts, 2008). It is not really an SE of an estimated parameter at all (Brown, 1996). It instead expresses the dispersion of all data from the trend line, $SE_{est} = ((SS \times (1 – R^2)) / (N – 2))^{1/2}$, which also equals “root mean square error” or “root mean square residual,” $SE_{est} = (MSErr)^{1/2}$. Another misunderstanding about SE_{est} is that it is “scale bound”; it lacks meaning outside of a particular measurement scale, so SE_{est} should not be compared across studies unless the time and score scales match. Because it is in SD units, SE_{est} does have one useful interpretation. If $SE_{est} = 11$, then about 68% ($\pm Z = 1$) of the observations are expected to lie within ± 11 points from the trend line.

4. Judging Reliable Improvement From One Time to a Later Time

It is often useful to compare performance levels between two points in time. This can be accomplished with PM data, and when the comparison is to serve medium- and high-stakes decisions, one should calculate “reliable improvement,” that is, considering measurement error. Reliable improvement can be calculated by a student t test but also can be judged visually from nonoverlapping CIs. As stipulated earlier, each time point should include at least three data points, permitting the use of the favorable SE for a “group of scores” in a series. Most regression programs permit the user to specify a confidence level, and for this comparison an 83.4% (83% or 84% are both commonly used) level should be selected (Schenker & Gentleman, 2001). CI overlap is defined as when the lower CI limit of the larger score drops below the upper CI limit of the smaller score. When the two 83% CIs do not overlap, then we can say with 95% certainty that the student has made “statistically significant” improvement. This overlap can be judged by glancing at CI limits of the two scores. It also can be judged by visual analysis of these CIs on a graph. Figure 3 shows the 83% CIs around $Yest$ scores at Weeks 2 and 12.

<table>
<thead>
<tr>
<th>Week</th>
<th>CI Lower</th>
<th>CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>42.4</td>
<td>57.6</td>
</tr>
<tr>
<td>6</td>
<td>48.7</td>
<td>63.0</td>
</tr>
<tr>
<td>12</td>
<td>58.0</td>
<td>72.0</td>
</tr>
</tbody>
</table>

Their respective CIs do not overlap (52.7 is higher than 47), so we can be quite (95%) sure that the student did improve from Week 2 to Week 12.

Technical notes. Statistical testing by nonoverlapping CIs is supported by several measurement studies, including two Monte Carlo simulations (Browne, 1979; Goldstein & Healy, 1995; Payton et al., 2003, 2000; Schenker & Gentleman, 2001). In most cases it is a good approximate method. Judging 83% CI overlap is quite accurate when the two scores being compared have similar SEs, as would any two scores from the same data series. In the unlikely occurrence of very different SEs (with a ratio of 4 or 5 to one or greater), then the nonoverlapping CI test loses power. A correction method has been provided for such cases (Payton et al., 2003). The SEs for two $Yest$ scores from a single data series are most different when they are at different distances from the center of the time scale. For our example data, SEs for $Yest$ at Weeks 1 and 6 or at Weeks 6 and 12 would differ the most. But for Weeks 2 and 12 the SEs for $Yest$ are 1.21 and 1.14, respectively, a difference so small as to have no practical impact. For linear regression programs that output the SE but not upper and lower confidence boundaries or limits, this CI overlap method may offer few advantages. A standard t test will be more accurate. The major benefits of the CI overlap method are (a) results are directly output from many regression modules, with no calculations required, and (b) it can be plotted on a time series graph and is open to visual analysis.

5. Proper Uses of Slope Versus Trendedness

“Rate of improvement” or “trend line slope,” calculated as (rise/run), is the most common improvement summary from PM data. However, it has distinct limitations, and for some purposes “slope” is less desirable than an alternative,
“trendedness,” summarized by R and R^2. Slope should not be used when “growth rates” or “improvement rates” are compared across different scales and skills, as slope is not a standardized index. Figures 4a and 4b help show the difference between slope and a standardized trendedness index (Pearson R or R^2).

In Figure 4a, overall growth is apparent despite considerable variability or “bounce” in data toward the center of the series. A linear regression line has been fit to the Figure 4a data, from which a slope can be calculated as (rise/run). The line rises 11.34 points over the 14 weeks, so the slope is $11.34/14 = .81$ points per week. The scores in Figure 4b appear quite different, with considerable more variability or “bounce,” and we would be less satisfied with the supposed improvement displayed for this student. Yet the “best fit” regression line in Figure 4b has a rise of 11.2 points over 14 weeks, so rise/run = 11.2/14 = .80, nearly the same slope as in Figure 4a. Although the slopes of Figures 4a and 4b are nearly identical, the tendency of individual scores to follow those slopes varies greatly. This tendency of individual scores to follow a trend or “trendedness” may be at least as important as slope in judging student improvement.

Trendedness is the consistency with which scores continue to move up over time, and is summarized by R and R^2. In Figure 1a, there is greater consistency in upward movement over time, that is, most data points are reasonably close to the line, yielding $R = .79$, and $R^2 = .62$. We can say that about 62% of score differences can be described as linear improvement over time. That degree of trendedness is substantial—well beyond chance levels ($p = .0005$). In Figure 4, data show less improvement consistency—less trendedness. More data points are far from the line, so the trendedness index, $R = .48$ and $R^2 = .23$. Only 23% of score differences can be described as linear improvement over time. This amount of trendedness is only borderline significant ($p = .07$).

Slope summaries pervade PM, but one could argue that trendedness indices R or R^2 are at least as useful. Do we most want to see a steep trend line or scores that improve with high consistency over time? Although steep trend and a high degree of trendedness tend to go hand in hand, they do not always. With very short data series, one commonly sees steep slopes but low trendedness or low upward consistency as measured by R and R^2. Both slope and trendedness reference a trend line slope summarizing its incline and R or R^2 its distance from the data points. A more complete summary could include both. An alternative solution, described later, is to include CIs around a slope, or at minimum a p value to indicate whether the slope is beyond chance level. Though these solutions would ameliorate one limitation of slope, they cannot fix another, which is described next.

A second limitation of slope that is overlooked is that slope is scale bound, that is, its interpretation depends on the particular score scale used. A slope’s interpretation depends on the score range, number of items, content, breadth, and difficulty level of a set of probes. By contrast, R and R^2 are “scale free,” so they can be used to compare progress across different sets of probes and even different skill areas. Slope’s “improvement rate” must be interpreted separately for a set of probes covering long division versus a second with a mix of short and long division items. The improvement slope for spelling accuracy with a content domain of Grade 1, 2, and 3 words is interpreted differently from the slope from probes containing only Grade 2 words. These differences in scale do not, however, affect interpretation of the standardized trendedness indices R and R^2.

6. Expressing “Rate of Improvement” (Slope) With Error

The common summary of dynamic improvement in PM is trend line slope. For medium- and high-stakes decisions, slope should be communicated along with its measurement error. The slope SE as well as CIs for any chosen confidence level are common outputs from a regression program. Confidence limits around a slope also can be depicted graphically. Figure 5 contains data collected over 14 weeks, with three probes administered in the first and last weeks to justify using the favorable group CIs for #est scores.

The regression slope is 0.815. The two lines pivoting from its center represent upper and lower limits at the selected 83.4% confidence level. The steepest line is the upper bound, with slope $= 1.0028$, and the lower bound has slope $= 0.63$. The plotted triangles are the 83.4% CIs around #est at Weeks 1 and 15. Close examination shows that the #est CIs are quite close to the outer boundaries for the slope, though not exactly the same. This close similarity is always the case.

For medium- and high-stakes decisions, good slopes should be expressed with their upper and lower CI boundaries at a confidence level that is reasonable given the “costs of a regretted decision.” The CIs around a slope also allow the comparison of slopes across students (assuming they
are using the same set of probes) or a student’s slope in the fall with his or her slope in the spring. The method of 83.4% CI overlap described earlier for two Yest scores also applies to comparing two slopes. The method also can be used to compare the “rate of improvement” between two students, as long as the same set of probes has been used.

7. Controlling Autocorrelation

An obstacle to analysis of PM data is serial dependence or autocorrelation (r_{auto}) commonly found in time series data (Sharpley & Alavosius, 1988; Suen & Ary, 1987, 1989). r_{auto} violates the assumption of data independence that applies to most statistical tests. r_{auto} is the undesirable predictability of a data point from its immediately preceding neighbor (lag-1 r_{auto}). A perfect linear trend line is 100% autocorrelated but is of a benign type because linear improvement is expected and desired. Undesirable r_{auto} in PM data is that remaining after removal of linear trend (Busk & Marascuilo, 1988; Manolov & Solanas, 2008; Matyas & Greenwood, 1996; Parker, Cryer, & Byrns, 2006). The solution to r_{auto} in PM data is to model it, identify it, and remove it. However, that can affect the main calculations of slope and trendedness, CIs, and p values as well as the visual configuration of data. r_{auto} is a nuisance, whose removal ideally causes minimum change in these other indices. Successful removal minimizes this collateral damage yet still reduces r_{auto} to an acceptable level.

r_{auto} may be positive or negative, but only positive r_{auto} is of great concern. Positive r_{auto} is visible as stretches of “persistence” in data direction; a rising data point tends to be followed by another rise and then another, or falling data similarly following one another in continuous stretches. Negative r_{auto} is the tendency to alternate between rising and falling data points, creating a sawtooth pattern. Negative r_{auto} is commonly seen in data with low reliability (Salkind, 2007). Although negative r_{auto} is not desirable, it does not present the obstacle to interpreting results that positive r_{auto} does.

The Durbin–Watson test of r_{auto} is a common output from linear regression, ranging from 0 to 4, with 2 signaling no r_{auto} and less than 2 increasing levels of positive r_{auto}. Values of less than 1.25 signal dangerous levels of positive r_{auto} (Yaffee & McGee, 2000), regardless of the p value. A second test of r_{auto}, the lag-1 correlation test, is also a common linear regression output. Positive lag-1 values greater than .20 or .25 signal dangerous r_{auto} levels, regardless of their p values (Matyas & Greenwood, 1996). For short data series, one should not rely on the p values for Durbin–Watson or lag-1 tests to determine whether dangerous r_{auto} exists or not.

The past 5 years have seen r_{auto} techniques built seamlessly into linear regression modules for time series data, requiring no extra effort by the user. Typical is the Multiple Regression with Serial Correlation module, new in the 2007 version of NCSS (Hintze, 2007). And even more useful for PM practitioners is the free 2009 version of gretl (Gnu Regression, Econometrics and Time-series Library; Cottrell & Lucchetti, 2009). Freely downloadable from http://gretl.sourceforge.net/, gretl offers a choice of three r_{auto} control methods within linear regression: Cochrane–Orcutt, Hildreth–Lu, and Prais–Winsten. All provide graphs of original and transformed scores, so the user can judge the amount of distortion caused by removing r_{auto}. Grelt provides full statistical output and can save residual, original, and transformed scores.

Figure 6 presents four published data sets with similar configurations to show the effects of r_{auto} cleansing. Each graph contains original scores (circles) and scores cleansed...
of autocorrelation (triangles). The related Table 1 reports changes in r_{auto} and Durbin–Watson as well as changes in slope, p values, and R from cleansing. The selection of these data sets was not random but purposeful to show typical effects.

Initial r_{auto} levels (lag-1) ranged from .15 to .56, whereas cleansed scores were all below $r_{\text{auto}} = .10$. Durbin–Watson initial levels ranged from 0.45 to 1.37, whereas cleansed levels were all close to the Durbin–Watson neutral value of 2. Thus, control of r_{auto} was successful in these four typical data sets.

Control of r_{auto} is a technical adjustment, and changes in the appearance of PM graphs should be minimized. Graph distortion disallows visual analysis and does not permit visual and statistical analysis to work together. Visual analysis of Figure 6a shows considerable distortion, whereas for Figure 6d it is barely discernable. These results match what we see in daily analysis—that correcting only large r_{auto} levels of .50 or .55 and higher badly distorts the graphic display. With smaller initial r_{auto} levels below .45 or .40, cleansing is usually effective and distorts little. Also note in Table 1 that cleansing data tends to change R and p values very little. The slope is more volatile, showing more change, which is yet another way that R is a more dependable summary than slope.

Understanding the practical effects of r_{auto} on PM data is a new concern for our field, with much still unknown. A study is under way by these authors comparing three leading methods of r_{auto} control (all available in free gretl software): Cochrane–Orcutt, Hildreth–Lu, and Prais–Winsten.

Our tentative, informal judgment at this point is that Prais–Winsten is equal or superior to the others on four criteria: (a) complete removal of r_{auto}, (b) minimal change in graph configuration, (c) minimal change of slope, R, and p values, and (d) maintenance of all data points rather than losing one, as most techniques do.

Technical notes. Nearly a dozen methods have been advanced in the past two decades to control autocorrelation (SAS software offers six), but we found none field tested with typical single-student PM data. The best researched method is the “autoregressive integrated moving average” (ARIMA) approach (Box & Jenkins, 1976; Glass, Willson, & Gottman, 1975). ARIMA backcasting with a lag-1 (AR-1) model showed good results in field testing with single-participant time series data (Parker, 2006). But ARIMA analysis is complex and requires a dedicated ARIMA module. By integrating r_{auto} control into standard linear regression in software such as gretl, for the first time casual users of regression can control r_{auto}.

Conclusions and Recommendations

For special educators, school psychologists, and other assessment specialists in schools, the use of PM for medium- and high-stakes decision making requires new knowledge and skills. For PM data, the reliabilities, SEs, and even CIs calculated within a CTT model are inadequate. PM is open to sources of error that do not exist in a simple regression model. For special educators, school psychologists, and others to make effective use of PM data for important school decisions. None of this information is new; it all has been available in articles and texts on fixed linear regression, and even CIs calculated within a CTT model are inadequate. PM is open to sources of error that do not exist in a simple regression model.

- Estimating a static performance level in PM
- Fitting a level of confidence to an educational decision
- Expressing an estimated score (\hat{Y}) with its measurement error
- Judging reliable improvement from one time to a later time
- Properly using slope versus trendedness
- Expressing “rate of improvement” (slope) with error
- Controlling autocorrelation

Together, these skills and understandings should arm special educators and others to make effective use of PM data for important school decisions. None of this information is new; it all has been available in articles and texts on fixed linear regression and $N = 1$ time series data but is rarely if ever applied to PM in schools.

Because of the expansion of the CTT error model beyond its range of usefulness, PM practitioners tend to make only partial use of the regression alternative. For example, calculation of a static level of performance from PM data is...
rarely seen, and when it occurs it is most likely simply tak-
ing the mean or median of scores collected on the same
date. That approach does not make use of the full series of
scores as does the regression model. And use of the CTT
model to estimate the reliability of a set of probes has
caused reliability to be overestimated at levels not substan-
tiated by examination of PM data from the same probes.
Here we lend some perspective to acquiring the seven
skills covered in this article. First in logical order is the con-
sideration of confidence levels appropriate to various deci-
sions. Confidence levels have equal importance within CTT
and regression, so choosing a reasonable level based on the
costs of a “regretted decision” is a general skill needed for
all medium- to high-stakes measurement within both mod-
els. In this article the term medium- to high-stakes decisions
was used advisedly. It will not be productive to paint all
decisions as either low or high stakes. A range between
these two extremes fits most decisions, for which the rela-
tively unused confidence levels of 90% and 85% are ap-
propriate. Those options to the reified 95% level will be needed
when educators frankly assess the costs of “regretted
decisions.”
The next needed skills for PM practitioners are dramati-
cally new: selecting “estimated Y” or YeSt scores based on
three scores on the same date or close together in time. Edu-
cators are used to dealing with obtained scores and concep-
tualizing true scores, but YeSt scores are new. The best
“conceptual handle” on YeSt scores is probably visual—all
are located on the regression line. Making YeSt scores visu-
ally accessible may encourage their acceptance.
Although YeSt scores may sound alien, they are normal out-
puts from most ordinary least squares linear regression mod-
ules. Not only is the YeSt provided on request, but also its CI is
provided, without computation. But the user must select the CI
for a small “group” of scores rather than a very wide PI for an
“individual” new score. There is general misunderstanding in
many fields on when a CI versus PI should be used, which this
article attempted to clarify in nontechnical terms. Only the CI
is recommended, and only when bolstered by three (or rarely
two) repeated trials or “approximate repeats.”
The skill of judging “reliable differences” between two
(YeSt) scores (or between slopes) by judging nonoverlap
between 83.4% (one may choose either 83% or 84%) CIs
will be novel for most educators. Educators do commonly
compare scores but seldom obtain “reliable differences”
between the scores. Reliable differences are differences that
include measurement error, a requisite for medium- to high-
stakes decisions. The method of CI nonoverlap is not pre-
sented for its high precision, as it may be inferior to a t
test. It is presented instead because (a) it requires only visual
judgment without computation, (b) requisite CIs are
common output, and (c) it should be more understandable
than SE calculations. The goal is not to devise more
sophisticated statistical tools but rather to make sound prac-
tices approachable by school personnel.
The many strengths of PM give it great appeal, espe-
cially for students with disabilities and those at risk for fail-
ure. Its ability to provide frequent feedback, its ability to
measure gains cumulatively, and its use for goal setting
commend it as a key tool for student program decisions. But
its use for medium- to high-stakes decisions requires addi-
tional statistical tools and skills. They will permit consum-
ers to judge the extent to which PM can fill this new role.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interests with respect to the authorship and/or publication of this article.

Funding
The author(s) received no financial support for the research and/or authorship of this article.

References

About the Authors

Richard I. Parker, PhD, is an associate professor in the Department of Educational Psychology, Special Education at Texas A&M University. He has taught general and special education, has been a school psychologist, and has served as director of special education. His most recent research foci are single-case research methods, progress monitoring measurement issues, and defensible nonparametric analyses.

Kimberly J. Vannest, PhD, is an assistant professor in the Department of Educational Psychology, Special Education at Texas A&M University. Her research interests are in determining effective interventions for children and youth with or at risk for emotional and behavioral disorders including teacher behaviors and measurement.

John L. Davis, MA, is a doctoral student in the Department of Educational Psychology, School Psychology at Texas A&M University. His research interests include measurement considerations in progress monitoring and acceptability of intervention protocols in schools.

Nathan H. Clemens, PhD, is an assistant professor in the Department of Educational Psychology, School Psychology at Texas A&M University. His research interests include the assessment and measurement of reading skills in early elementary school, early identification of learning disabilities, and the implementation of response to intervention models in schools.